# Analog to digital: Counting the bits

08/13/2010

Dear Control Engineering: I was reading a release about an analog-to-digital converter that says it’s 12-bit. What does that mean exactly? Is 12-bit better than eight-bit?

Bit counts are all about trying to convert analog measurements to digital. Let’s say you’re trying to measure the diameter of a coin with a ruler. You put the ruler on the coin and notice that it’s slightly more than 11/16 in. The actual is somewhere between 11/16 and 3/4 in. You can eyeball the measurement and interpolate in your own mind. Machines aren’t as good at that as you are.

Getting a machine to make that measurement requires converting analog to digital. And since digital deals with high and low (on or off, 1 or 0, etc.) you have to break the reading into discrete segments. For a machine, an analog measurement might be given as a voltage, such as 0 to 10 V. To digitize the measurement, you can use a comparator that turns from off to on when the voltage reaches 5 V. Using that, you have just created a one-bit A to D converter. If you apply this to your ruler, let’s say anything below 1/2 in. is <5 V. Anything over 1/2 in. is >5 V. Unfortunately, this isn’t very precise. But if you’re clever, you realize that if you add a second comparator, you can effectively double the number of marks on the ruler. You now have a two-bit device which gives you marks at quarters. Adding another comparator makes a three-bit device and gives you eighths. Every time you add another bit, you get twice as many divisions. So your ruler that has sixteenths is equivalent to four-bits.

If you keep extending the math, a 12-bit converter gives you 4,096 units. So relating back to the A-to-D converter you mentioned initially, this means that whatever range of measurement you’re dealing with is divided into 4,096 individual units. If you’re using that over one inch, it means each increment is 0.00024414 in. That’s pretty precise and certainly capable of giving you reliable readings to three decimal places. The same applies regardless of what you’re measuring: pressure, temperature, size, flow, level, weight, or whatever the application, the total range span will be divided the same. So for a given range, 12-bit conversion with 4,096 units allows you to be more precise than eight-bit with only 256 units.

Digital communication methods also pay attention to bit counts. The earliest was the telegraph, which is a one-bit device: dot or dash. Getting something faster, such as the teletype, required a higher bit count to allow each character to have its own code. Teletypes use six-bit which allow for 64 different characters. This was fine for a while, but moving to ASCII codes requires 128, or seven-bit. Early word processers changed to eight-bit to provide 256 characters.

Digital sound reproduction also uses bit counts. A standard audio CD uses 16-bit reproduction. That means that there are 65,536 increments running at 44.1 kHz, so if you are trying to digitize the wave form of one second of music, you have a mosaic that’s 65,536 by 44,100 squares. Poorer quality sound reproduction is only 12-bit, and you would probably be able to hear the difference. Some audiophiles consider 16-bit to be too crude and insist that 24-bit (with about 16.8 million increments) running at 96 kHz is necessary for really accurate sound.

Ultimately, if you’re trying to determine what bit count you need for a specific application, you have to ask how precise the measurement has to be. If high precision over a wide range is necessary, say for robotics or a coordinate measuring machine, 12-bit may not cut it. On the other hand, if you’re trying to measure pressure between 0 and 100 psi, and ±5 psi is close enough, even eight-bit resolution is overkill.

Peter Welander, pwelander(at)cfemedia.com
Control Engineering

Visit the Control Engineering Process Control Channel.

The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Big plans for small nuclear reactors: Simpler, safer control designs; Smarter manufacturing; Industrial cloud; Mobile HMI; Controls convergence
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.

## Integrator Guide

 Search the online Automation Integrator Guide

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

## Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.