'Go-to' strategies for energy management

Condition-based maintenance will allow you to assess your building envelope and plug your leaks

05/20/2013


“Energy management” is a term that has a number of meanings, but I’m sure most folks are mainly concerned with the one that relates to saving energy in businesses, industrial environments, and public-sector or government organizations. When it comes to energy savings, energy management is the process of monitoring, controlling, and conserving energy in a building or organization.

Typically, this involves the following steps:

  • Metering your energy consumption and collecting related energy data.
  • Finding opportunities to save energy and estimating how much energy each opportunity could save. You would typically analyze your meter data to find and quantify routine energy waste, and you might also investigate the energy savings that you could make by replacing equipment (e.g., low efficiency motors replaced with high efficiency, lighting, upgrade or replace piping insulation).
  • Taking action to target the opportunities to save energy (i.e., tackling the routine waste and replacing, upgrading, or repairing the inefficient equipment). Typically, you would start with the best opportunities, as defined by ROI.
  • Tracking your progress by analyzing your quantifiable meter data to see how well your energy-saving efforts have worked. 

When you look around, there are a large number of companies that provide energy management services offering a vast array of products and services that are intended to help the end user not only understand its inefficiencies but the actions it can take to become more energy efficient and responsible. I have personally had the experience of working with multiple clients in differing industry verticals and have seen how equipment reliability and energy efficiency go hand-in-hand. The ability to understand how and why equipment fails is essential in understanding and developing energy-efficient strategies for the operation and maintenance of industrial equipment.

This will come as no surprise. Energy costs are rising and becoming a larger percentage of costs for industrial plants and facilities alike. Plant and facilities managers are looking for savings but are wary of full-scale, costly energy savings programs. However, most I have spoken with are interested in “low or no cost” opportunities if prioritized and executed in a way that funds future activities. I often refer to this as a “paying it forward” approach. 

Analyzing savings and opportunities

Figure 1: Follow-up system level audits. Courtesy: Allied ReliabilityBecause all plants and facilities are unique in their own way, opportunities are plant or facility dependent. This dependency makes the “paying it forward” approach extremely flexible. The flexibility begins with an initial current state analysis, which would identify future threats to profitability and ways to reduce costs. The identified opportunities should, therefore, become an integral part of the corporate strategy to counter such threats and improve profit margins through energy savings. Applying good energy management practices is just as important to achieving these savings as the appropriate process technology. It should be remembered that any operational savings translate directly to bottom-line improvement, dollar for dollar.

During a current state analysis, the plant or facility systems will be identified and evaluated for follow-up “paying it forward” energy opportunities. While most facilities and plants have common systems, such as HVAC, electrical distribution, and lighting, others are building specific, such as compressed air or steam.

Generally speaking, the types of follow-up system level audits are illustrated in Figure 1.

While each of the items listed above is important and savings are significant, each has a different ROI valuation. Some represent large savings and relatively quick ROIs, while others are steady savings over a longer duration. In the remainder of this article, I’d like to draw your attention to the auditing of the building envelope, which can help (plants and facilities equally) identify where conditioned air is leaking or outside air and other matters are entering, causing systems to work harder (HVAC, steam, etc.) and be less efficient. 

What is the building envelope?

Figure 2: Building envelope functions. Courtesy: Allied ReliabilityTo begin our discussion about building envelope, let me start by defining it as all of the components that make up the shell or skin of a building. These components are designed and utilized to separate the exterior of a building from the interior. The building envelope may also be defined as the components that separate conditioned areas from unconditioned space.

Building envelopes are designed by project architects and engineers to meet the needs of each individual application (i.e., distribution warehouse, food processing facility, automotive manufacturer, commercial facility, etc.). The building envelope must be carefully designed with regard to climate, ventilation, and energy consumption within the structure.

By serving the four basic functions of a building envelope, as shown in Figure 2, the envelope affects ventilation and energy use within the building. This is a key point to understand when identifying and quantifying related energy cost savings opportunities.

Figure 3: Advantages and disadvantages of tight and loose building envelopes. Courtesy: Allied Reliability

Building envelopes are often characterized as “tight” or “loose.” A tight envelope is designed and built to allow relatively few air leaks. This often requires significant quantities of insulation, caulk, sealants, and energy-efficient windows to create a tight shell for the building. A loose envelope is designed and built to allow air to flow more freely from the exterior to interior spaces. I should add that a loose envelope may be created by design or may be the result of poor construction.

Debates are ongoing as to the benefits of tight versus loose building envelopes. Some advantages and disadvantages are shown in Figure 3. 


<< First < Previous 1 2 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.