Inverter topologies: Voltage-source or current-source

In very basic terms, a variable-frequency drive (VFD) consists of three sections, moving from the drive’s input to output. A rectifier (or converter) changes ac input to dc, followed by a dc link that serves as an energy storage circuit, and then an inverter switches dc back to variable frequency ac output.

08/11/2010


In very basic terms, a variable-frequency drive (VFD) consists of three sections, moving from the drive’s input to output. A rectifier (or converter) changes ac input to dc, followed by a dc link that serves as an energy storage circuit, and then an inverter switches dc back to variable frequency ac output. Among different ways to categorize VFDs, configuration of the inverter section is an important one—namely, current-source inverter (CSI) and voltage-source inverter (VSI).

One distinguishing characteristic is the energy storage section between converter and inverter. VSI drives use capacitive energy storage, while CSI drives use inductive energy storage in their respective dc links for voltage and current. Another topology of current-source drives is the load-commutated inverter (LCI), which also employs a dc link inductor, but relies on commutation by the connected motor (or load) via switching direct current to the motor windings. This contrasts with a standard CSI drive where a line-commuted rectifier and self-commutated inverter are typical.

VSI drives work with both induction and synchronous motors, some CSI drives also work with induction and synchronous motors, but LCI drives are limited to only synchronous motors.

According to TM GE Automation Systems (TMEIC GE), voltage-source inverter is the only choice for drives above a certain power rating, compared to older technology current-source inverter drives. “In addition, any drive load that requires high torques and high response, such as a steel mill drive, cannot use current-source because of its much slower response due to the inductive source,” says Tim Russell, senior system engineer. “CSI drives are best suited for pumps and fans.”

www.tmeicge.com

LCI drives are intended for very large power output, and in that sense are an exception to the overall power limit of current sourcing. LCI drives are advantageous for ratings up to 50,000 hp (37,500 kW) or even higher and for control of synchronous motors, explains Rick Hoadley—principal consulting applications engineer, MV drives—at ABB Inc. “LCI drives operate at a slightly leading power factor, which allows devices in their inverter section to be load commutated,” he says. “This eliminates induction motors, which can’t run with a leading power factor.” LCI drives are available from ABB and Siemens.

www.abb.us/drives

www.siemens.com

Power-switching devices

Power-switching devices constitute another difference between CSI and VSI drives. Whether a power device is current- or voltage-switched determines its applicability to the type of drive. These power semiconductors range from the venerable silicon-controlled rectifier (SCR) and gate turn-off (GTO) thyristor to newer symmetrical gate-commutated thyristor (SGCT) and injection-enhanced gate transistor (IEGT).

TM GE Automation Systems provides the following attributes and trade-offs among some of these devices:

  • Current- switched devices—SGCT and integrated gate-commutated thyristors (IGCT)—require many more parts in firing/gate control than voltage-switched devices, such as IEGT and insulated-gate bipolar transistors (IGBT), which are available in LV and MV versions.
  • Voltage-switched devices—IGBT and IEGT—have much lower switching losses than current-switched devices.
  • Conduction losses are nearly equal for equivalent voltage- and current-rated devices: SGCT, IGCT vs. IGBT, IEGT.
  • Voltage-switched devices allow higher switching rates and provide better output waveforms.

Also read:

Why Choose Medium-Voltage Drives?

What is medium voltage? 

Transformerless medium-voltage drives perspective

Frank J. Bartos, P.E., is Control Engineering consulting editor. Reach him at braunbart(at)sbcglobal.net.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.