Metal oxides vital to green energy

Harnessing the energy of sunlight can be as simple as tuning the optical and electronic properties of metal oxides at the atomic level by making an artificial crystal or super-lattice “sandwich.”

05/03/2012


ISS Source: Industrial safety and security sourceHarnessing the energy of sunlight can be as simple as tuning the optical and electronic properties of metal oxides at the atomic level by making an artificial crystal or super-lattice “sandwich.”

“Metal oxides are cheap, abundant and ‘green,’” said Louis Piper, assistant professor of physics at Binghamton University in Binghamton, NY. “And as the study proved, quite versatile. With the right touch, metal oxides can be tailored to meet all sorts of needs, which is good news for technological applications, specifically in energy generation and flat screen displays.”

This is how it happens: Semiconductors are an important class of materials in between metals and insulators. They end up defined by the size of their band gap, which represents the energy required to excite an electron from the occupied shell to an unoccupied shell where it can conduct electricity. Visible light covers a range of 1 (infrared) to 3 (ultraviolet) electron volts. For transparent conductors, you need a large band gap, whereas for artificial photosynthesis, you need a band gap corresponding to green light. Metal oxides provide a means of tailoring the band gap.

While metal oxides are very good at electron conduction, they are very poor “hole” conductors. Holes refer to absence of electrons, and can conduct positive charge. To maximize their technologically potential, especially for artificial photosynthesis and invisible electronics, you need hole conducting metal oxides.

Knowing this, Piper has begun studying layered metal oxide systems, which can combine to selectively ‘dope’ (replace a small number of one type of atom in the material), or ‘tune’ (control the size of the band gap). Recent work revealed that a super-lattice of two hole-conducting copper oxides could cover the entire solar spectrum. The goal is to improve the performance while using environmentally benign and cheap metal alternatives.

For instance, indium oxide is one of the most widely used oxides used in the production of coatings for flat screen displays and solar cells. It can conduct electrons really well and is transparent. But it is also rare and very expensive. Piper’s current research aims to use much cheaper tin oxide layers to get electron and hole conduction with optical transparency.

“It’s going to be a case of some serious detective work,” Piper said. “We’re working in a world where physics and chemistry overlap. And we’ve reached the theoretical limit of our calculations and fundamental processes. Now we need to audit those calculations and see where we’re missing things. I believe we will find those missing pieces by playing around with metal oxides.”

By reinforcing metal oxides’ ‘good bits’ and downplaying the rough spots, Piper feels the development of new and exciting types of metal oxides can tailor specific applications are well within reach.

“We’re talking battery storage, fuel cells, touch screen technology and all types of computer switches,” Piper said. “We’re in the middle of a very important gold rush and it’s very exciting to be part of that race to strike it rich. But first we have to figure out what we don’t know before we can figure out what we do. One thing’s for sure: metal oxides hold the key.”



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.