The pace of technological innovation, or, where’s my flying car?

Each new technology is supposed to give us better lives. Why do industrial users adopt them so slowly?


This 1949 issue of Popular Science discusses new aircraft designs that could land and take off in your front yard. Why don't I have one?New technologies, or more properly technology reporters, have promised us over and over that the latest innovation just unveiled will, in the very near future, transform our lives in ways we never imagined. Well, I’m still waiting for that flying car I was promised fifty years ago. Why can’t I buy one?

That’s not to say that technology hasn’t delivered amazing things—it just didn’t always deliver the things we imagined, or that we were promised, when we first heard of them. This isn’t restricted to consumer products. Many of industrial products have suffered the same fate. In consumer markets, all it takes is one killer app for a technology to really take off. That seems to be the problem with the industrial market for control systems and devices: there are simply no killer apps that will pay for the migration, and corporations are all about getting a return on investment. Buy this new machine and you’ll double your production with fewer operators! We’ll take two, please. Buy this control system and your operators will never miss another critical alarm! Sure thing. Is it a mystery why so many existing plants continue to run on obsolete or at best very outdated control systems?

Intelligent sensors will transform how your plant operates! One of the problems with the hype is it wants to sell us something we simply won’t use, or in some cases, can’t use. Intelligent sensors have certainly improved sensor accuracy and made maintenance easier, but often that’s all that’s been gained because the intelligence stops at the hand-held calibrator. Taking full advantage of the smart technology requires a lot more than just installing the transmitters. Before you even start, you need to have a vision of how the additional process data will be used in your facility to improve operation. Will knowing the standard deviation of the measurement change anything the operator does? How about a measurement of the transmitter’s case temperature? If you know that the transmitter is guaranteed not to drift for five years, will that cause you to change your calibration SOPs? Since the answer to those questions is probably no, then you’re going to have a hard time justifying upgrading your control system just to be fully compatible with them. Of course without doing the upgrade, you don’t know how much you’ve been losing to poorly functioning loops.

Applying controller-based fuzzy logic, or model predictive control will pay for itself. This should be the killer app for getting people to upgrade, but it hasn’t happened in most plants. The people who understand the value of advanced process control (APC) products and applications have already purchased external systems or developed algorithms to do the work. Those who haven’t don’t know what they don’t know about their process interactions and think they’re doing a perfectly adequate job. Sometimes you need to pick something small to serve as a demo project to show the capabilities of APC. Use that project to get the data needed to show the money people what they’re missing. How much money could you make or save by reducing the overshoot of a key control function by a factor of 100? Of course, extracting the maximum benefit from APC, you must start with making sure all instruments and control devices are properly sized and in excellent working order.

Intelligent alarming will greatly improve your operators’ ability to do their job. The real world application of alarm schemes has resulted in alarm floods that have operators looking for an ark. Spending the money to do a proper alarm rationalization will only keep you from spending more money fixing something that got wrecked while the operator was too busy or too confused to stop the wreck in the first place. The capability is certainly there to ensure that the operator can always respond in a timely manner and appropriate way to every alarm. Look at it this way: how much did it cost you to rebuild the boiler that blew up because the operator couldn’t tell what to do first?

Once you get past all the marketing hype, you are left with a couple of realities. Control systems don’t make you money, but they can really cost you money if they aren’t working properly. Once your system is obsolete, it costs a lot more to keep it running, and if a board blows out at 2:00 am on a Sunday morning, it just might shut you down. So the answer to the first question is simple: I don’t have my flying car because I haven’t convinced myself or my company that I really need it.

This post was written by Bruce Brandt, PE. Bruce is the DeltaV technology leader at MAVERICK Technologies, a leading system integrator providing industrial automation, operational support, and control systems engineering services in the manufacturing and process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, and business process optimization. The company provides a full range of automation and controls services – ranging from PID controller tuning and HMI programming to serving as a main automation contractor. Additionally MAVERICK offers industrial and technical staffing services, placing on-site automation, instrumentation and controls engineers.

click me