Automated cell for bearing machining, parts sorting

Texas shop’s automation team deploys programmable gages for measuring and sorting mud-motor bearings. Process-controlled hard turning cell paid for itself in 18 days.

11/24/2013


Overall view at Conroe Machine through guarding shows a hard-turning cell with robotic part handling and part inspection in Texas shop’s automation team, which deployed Renishaw Equator programmable gages for measuring and sorting mud-motor bearings. ProcConroe Machine is doing what most machine shops only dream of: hard turning a family of parts around the clock in a fully automated cell that operates a "self-controlled" process. The company is proof that the dream is achievable for any shop ready to use the talents of today’s young automation experts to exploit new technologies, including programmable gages. The turning cell, with software and programming developed by CNC programmer James Wardell and robotics technician Jeff Buck, integrates a robot with the gaging system, using software to provide communication for 100% part inspection and auto-compensation of a twin-spindle lathe. The cell also boxes and palletizes finished parts. According to the company, the cell paid for itself in 18 days.

The same automation team created a fully automated part measurement and sorting cell for a customer, this time combining two gages, robot, vision system, and multiple lanes of low-profile conveyor. In both applications, the gage demonstrated the value of programmable comparative inspection by quickly measuring a family of bearing races and doing it cost effectively, without fixturing or problems from a shop floor environment.

The robot places a machined bearing into the Equator’s measuring envelope (foreground), with part conveyor and Okuma 2SP-250H twin-spindle lathe in background. The aluminum block on the Equator’s fixture plate has a hole in the center, which the Equator uConroe Machine is a relatively young company, founded by Murray "Tippy" Touchette in 2000, with the objective of producing parts with the best manufacturing technology. The company grew rapidly to about 150 employees operating in a climate-controlled 65,000-sq-ft (6000-sq-m) plant. While it is a general-purpose shop, Conroe’s location near Houston results in a high percentage of business from the oil and gas industry, principally for drilling components. One of the company’s continuously running jobs for the industry is manufacture of thrust bearing races for downhole mud motors. These parts are produced by the thousands each week, around the clock.

More automation

The bearings are roughed out on four lathes that originally did roughing and finishing, and were served by four operators. These machines are now split into two cells, loaded/unloaded by robots, doing only the roughing operation—these cells were among the shop’s earlier automation projects (see Conroe's Johnny 5 robot on YouTube). The semi-finished parts are sent out to be case hardened to HRC 65 at a depth of 0.070 in. (1.7 mm) before the finish turning.

“Our production plateaued at 800 to 1000 total parts per day with these two cells,” explained James Wardell. “We had a single operator loading the machines and inspecting the parts. However, you can rely on an operator to correctly inspect only so many parts with this kind of volume, and we needed even more output.

Fanuc M20iA 6-axis robot waits for completion of measurement cycle before transferring acceptable parts to an engraving station and then to a shipping container at immediate right. Courtesy: Renishaw Inc.“For our next step up, we conceived a fully automated process for the finish machining, with automatic part loading, post-process measurement, automatic tool compensation, part engraving, and boxing/palletizing the parts,” he added. “We had pretty good ideas for the components of such a system, except for the part measurement technology, CNC type, and software for tool compensation. Inspection must be fast to keep up with the cycle times on the parts, which can be as short as 98 seconds. Originally, we looked at white light laser inspection because of its speed, but the parts are too reflective. We also looked at hard gaging and shop-floor CMMs. Hard gaging was very expensive and required setup attention, and the CMM gave no speed advantage.” While working on other projects, the company found out about the automated gages.

Process-control tools, software

The Renishaw Equator uses an SP25 probe for touch and scanning data collection, to find the center on the part, then surface scans to complete the measurement cycle. It works at speeds of up to 1000 points per second. Courtesy: Renishaw Inc.The low-cost, flexible alternative to dedicated gaging uses the comparison method of measuring. A master part with known measurements taken on a CMM is used to "master" the gage, with all subsequent measurements compared to the master. Repeatability is 0.00007 in. (0.002 mm) immediately after mastering. To compensate for shop temperature changes, the gage can be re-mastered at any time. The gage uses a probe for touch and scanning data collection, at speeds of up to 1000 points per second. Styli are stored in an integral six-port changing rack, and the system is programmed through gaging software. The gage can be used manually with push-button ease, but its software for automation also makes it ideal for integration into cells like Conroe's.

Conroe engineers saw the gage at an open house at Hartwig in early 2012, along with a twin-spindle dual-gantry lathe, said Wardell. “Apart from being automation ready for parts of our type, the lathe’s [Microsoft] Windows-based dual-path control has an open-architecture, PC-based operating platform, which was important in our plan for developing our own auto-compensation software.”


<< First < Previous 1 2 Next > Last >>

IAN , Non-US/Not Applicable, New Zealand, 11/25/13 01:07 PM:

automation in this case the only way to go. looking for a process to clean grease and inspect aircraft wheel bolts for a range of aircraft wheels