A four-step process to energy control

For many, an energy audit seems like a logical place to start. An energy action plan takes that crucial next step.

07/01/2010


Industrial buildings are responsible for 31% of global energy consumption, easily exceeding all other building types. While industrial facility ownership and management have generally been cognizant of energy as it relates to cost control and the competitive advantages of being viewed as green and sustainable, that statistic suggests that many energy efficiency opportunities aren't being exploited.

For many, an energy audit seems like a logical place to start. Although valuable due to energy efficiency improvement recommendations they make, such studies typically don't include mechanisms to ensure those improvements are addressed. An energy action plan takes that crucial next step, because it will recommend a roadmap that inculcates ongoing energy planning and accountability.
One such roadmap is comprised of four steps
• Measure energy usage
• Fix the basics
• Automate where appropriate
• Monitor and control

Step 1: Measure
The first step toward better managing energy is to ascertain current usage. That means collecting data from major energy consumers within a facility and analyzing the impact of those consumers on total energy consumption. Installing power metering and monitoring in this step is important to provide a baseline regarding utility usage and increasing energy awareness.
While an energy audit can provide industrial facility ownership a snapshot regarding the current state of a facility's energy usage, unless it drives a strategic energy plan, it is of little value. The most important thing is to do something with the recommendations an audit makes. A comprehensive energy action plan should address both the short-term improvements needed immediately as well as plan future strategies to implement as energy prices fluctuate. A well-thought plan should have clear actions in mind, and reflect good decisions that can be somewhat independent of current energy prices.

Step 2: Fix the basics
Fixing the basics is typically the only tactic addressed by facility management in the wake of an energy audit. This can include installing low energy-consumption devices and improving the plant's power factor.
But while these are certainly important and can translate to as much as a 15% energy efficiency increase, such measures are typically a one-time improvement.
For example, a new energy-efficient transformer has a useful lifecycle of two decades or more. Conversely, renewable self-generation options may both lower current costs and help a facility deal with the impact of potential changes in emission requirements.

Step 3: Automate
Ongoing energy efficiency improvements can be achieved by automating and regulating building systems and processes. Measures such as schedule-based lighting control and occupancy sensors automatically turn lights on only when they are needed, while HVAC control regulates heating and cooling at the optimal levels, which can change day by day. Variable frequency drives regulate the fans and pumps central to a facility's HVAC system and manufacturing processes, so they aren't constantly running at full capacity. Combined, these measures can provide up to a 15% energy efficiency improvement.
But more importantly, they facilitate an active approach to energy management, because they can be adjusted based on new energy efficiency opportunities that can arise in the future. One recent example is demand response, where pre-selected electrical loads are turned off based on a utility request or when electrical rates meet a pre-set threshold.

Step 4: Monitor and control
A strategic energy action plan also helps ensure that initial energy and cost savings don't erode over time. Power meter installations, monitoring services, energy efficiency analysis and energy bill verification can all help achieve this end, but one of the most effective ways is through an enterprise energy management (EEM) system, a tool that provides energy-related business intelligence to company stakeholders. Essentially, an EEM system collects energy-relevant data, such as water, compressed air, electricity, natural gas and steam values, production information and outside air temperature. That information is then collated and presented as actionable business intelligence in a dashboard format that can be customized for an individual users' needs.
The information an EEM system provides can be studied to find new ways to better manage energy usage, or troubleshoot existing energy challenges. For example, an EEM could be used to model one utility rate against another, or it could note that one department or plant's energy usage is egregiously higher than others, which can be investigated and addressed. An EEM system can also quantify payback on energy efficiency measures that are implemented.

Changing mindsets
An energy action plan that comprises the four steps listed above can help industrial facility management be proactive with regard to energy usage, instead of reacting to the latest energy cost spike. It also can help build energy accountability, among individual departments within a facility and even multiple facilities, and can constantly evolve to take advantage of new opportunities. This will help change mindsets across the enterprise, and make energy management a key component of corporate culture.

Jim Plourde is National Business Development Manager for Schneider Electric and has worked for the company for 14 years. Carl Castellow is a professional engineer with more than 25 years' experience in the field of industrial energy efficiency. He has worked the last four years heading Schneider Electric's industrial energy efficiency organization.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.