A quick summary and review of 10 previous blogs

Let’s take a look at what we’ve already discovered, and review the most important aspects of this “Cut the Copper” series.

06/06/2012


We’re now at 11 weeks into this series of blogs. I thank you for reading, and I appreciate your comments and questions. This might be a good time to pause a bit to review and summarize what we’ve said so far in the 10 preceding blogs. Those blogs have been generally historical background for the real topic coming soon–to “Cut the Copper” in modern data centers. Here’s a summary of our past discussions:

  1. In the earliest days of the electrical industry in the United States, good old mineral oil-filled distribution transformers proved to be very reliable devices, except when they blew up in a big ball of orange flames and black smoke. In order to be safely installed indoors, they had to be placed only inside fireproof vaults.
  2. The development of Askarel fluids in the 1930s allowed distribution transformers to be moved indoors, physically closer to the secondary loads, without risk of fire. The liquid was essentially nonflammable, and the transformers could be installed almost anywhere inside a facility, without worries about fire safety.
  3. During the World War II years, the overall national supply of copper became very tight, and most of the copper that could be produced was rationed to the construction of war machinery and munitions. This forced electrical engineers to become more creative in their power systems designs for facilities of all types, and the “loadcenter unit substation” concept was refined, caught on, and was very widely adopted. With intelligent system designs, the total tonnage of copper required for a distribution system could be reduced by about 80% from previous typical designs.
  4. From the beginning of World War II into the mid-1970s, tens of thousands of Askarel-filled distribution transformers were produced and installed inside plants of all types in the U.S., arranged in “Loadcenter Unit Substation” configurations. One of the key chemical ingredients in the Askarel fluid was a compound known as polychlorinated biphenyls (PCBs).
  5. In the early 1970s, the U.S Environmental Protection Agency was formed by Congress, and soon began to study the harmful effects of PCBs on humans when PCBs entered into the food chain. In 1979, the EPA concluded that PCBs were a very dangerous substance that caused genetic problems in humans, and issued a formal ban on all production of PCBs in the U.S.
  6. Transformer manufacturers experimented with other liquids as substitutes for Askarel–but all of those liquids had serious drawbacks that prevented widespread adoption. None of the new liquids worked nearly as well as the Askarel they were intended to replace.
  7. Open-ventilated dry-type transformers soon became quite popular, and worked very well in loadcenter unit substations until medium-voltage vacuum breakers became popular in the early 1980s, and were widely applied in all types of electrical distribution systems.
  8. The unique fault-interruption characteristics of vacuum circuit breakers highlighted a weakness in dry-type transformers, that hadn’t really been seen before with liquid transformers. When switching the primary windings of a distribution transformer, the load current and magnetizing current that had been flowing through windings dropped to “zero” nearly instantaneously, and the energy trapped inside immediately displayed itself as a huge transient voltage across the winding terminals.
  9. This phenomenon has caused many catastrophic failures of medium voltage dry-type transformers applied inside facilities of all types. Dry-types installed in data centers have been particularly vulnerable to this mode of failure, for a variety of reasons that have been discussed in recent blogs, and will be discussed further in upcoming blogs. 


Coming next week will be a little more history: “The early 2000s: The amazing boom of data center construction.”

Send me your comments and questions using the feedback mechanism below.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.