Analog Encoders Reduce Pre-alignment Time

How do you double semiconductor wafer throughput, decrease wafer pre-alignment time fivefold (to 600 ms), and improve in positional repeatability fivefold (to 5 nm), while at the same time reducing cost and increasing reliability? The competitive nature of the semiconductor industry places increasing importance on performance characteristics and integration ease for motion controllers used in t...

10/01/2007


How do you double semiconductor wafer throughput, decrease wafer pre-alignment time fivefold (to 600 ms), and improve in positional repeatability fivefold (to 5 nm), while at the same time reducing cost and increasing reliability?

The competitive nature of the semiconductor industry places increasing importance on performance characteristics and integration ease for motion controllers used in today’s semiconductor manufacturing systems. New processes demand finer position resolutions and better repeatability, while delivering higher throughput. At the same time, increasing process complexities require more integration flexibility of the motion control components chosen for new machine projects. When semiconductor manufacturing equipment developer Micro Precision Automation (MPA) developed a new metrology stage to address these trends, they turned to Agile Systems’ microMAX R distributed motion control system for key ingredients to help them achieve the new stage’s performance goals.

discrete control, machine control, motors, drives, motion control

Digital and analog encoder waveforms.

The system incorporates a fully integrated motion controller, servo amplifier and high-speed network for a single axis of motion. A high-speed network ties multiple separate motion axes into a full-featured, high-performance system.

Conventional quadrature, or incremental, encoders sense rotation with two pickups monitoring two encoder tracks. Each track consists of equal-size segments imprinted with a means to switch its pickup’s output between a high and low state. Motion registers as state changes.

For example, when the sensing is optical, the track segments alternate between black and white colors. The pickups are optical reflectometers (basically a light source paired with a photodetector). When the pickup moves from a black segment to a white segment, the output state switches from low to high. Further movement by one segment length provides another transition as the pickup moves from the white segment to the next black segment. Constant movement causes the output to become a square wave whose frequency is proportional to the motion speed.

A single track/pickup channel cannot, however, indicate the direction of motion. In fact, a back-and-forth vibration across one segment transition looks exactly like constant motion—in either direction.

Adding a second channel arranged to switch 90igh. Each negative transition will occur when B is low.

In that case, motion toward the left will pair positive channel A transitions with low channel B states and negative channel A transitions with high channel B states. A simple logic circuit can decode these paired encoder signals into up/down counter signals to increment/decrement a digital counter whose value then always corresponds to the monitored position. By monitoring channel B positions and incrementing/decrementing according to the then-current channel A state, the quadrature encoder system can achieve resolution equal to one half encoder segment length.

To achieve even better precision, MPA employed analog encoders developed by Heidenhain Corp. of Schaumburg, IL, which employ sinusoidal signals on both pickup channels instead of square waves. This allows electronic interpolation to obtain resolution substantially better than can be obtained from conventional square-wave encoders.

Position accuracy

Higher encoder resolution does not, however, guarantee similarly higher position accuracy because of limited current control resolution of the servo amplifiers. The servo amplifier’s output current determines the torque the connected servomotor generates. High current produces high motor torque; low current produces proportionally lower motor torque.

The servo system controls the motion of the servomotor shaft by varying the drive current. To take advantage of higher encoder resolution, the servo drive system has to move the servomotor shaft in increments as fine as the higher encoder resolution. This requires a much higher effective current resolution than is available from conventional systems.

discrete control, machine control, motors, drives, motion control

Conventional motion-control configurations require relatively large electrical enclosures to house separate power supplies, servo amplifiers, motion controllers and signal converters.

Agile Systems’ motion controller provides 14-bit effective current resolution, achieving position resolution of a few nanometers when applied to an appropriately designed mechanism. Previous generations of semiconductor metrology tools achieved positioning repeatability of 25 nm. MPA’s new stage features position repeatability of 5 nm with double the throughput.

The pre-alignment process takes up a considerable portion of the total tool-cycle time. It locates the center of the 300 mm wafer and locates the reference notch on its periphery. In most tools, the notch is found during a high-speed rotation and precisely located during a precision rescan. The process typically takes up to 3 seconds in conventional motion-control configurations.

MPA’s new system can reduce pre-align time to 0.6 second through careful collection of a laser-based prealignment signal. The system was designed using three motion controllers on a single backplane board, which allowed drastically improved signals over a conventional design. A high-speed Firewire B network connects the controllers to each other and to the central process controller for the metrology tool. Real-time axis position from axis encoders as well as digitized analog and digital signals can pass directly to the central process control through the high-speed network. This allowed MPA to collect clean high-speed prealignment data, which made it possible to eliminate the rescan step.

Tight integration

Conventional motion-control configurations require relatively large electrical enclosures to house separate power supplies, servo amplifiers, motion controllers and signal converters. Since metrology tools are tightly integrated with other semiconductor processing equipment, it is desirable to mount the motion-control hardware within the tool itself and eliminate the separate electrical enclosure found in conventional motion-control systems. Trying to find space for such a control configuration inside the tool proved extremely difficult.

MPA solved this space problem by choosing a motion control system that combines controller, servo amplifier, signal conversion and high-speed network in a single, compact package approximately, only 3 in long, 3

discrete control, machine control, motors, drives, motion control

Combining motion controller, servo amplifier, signal conversion, and high-speed network in a single compact package reduces motion-controller footprint.

Reduced wiring was another key ingredient to support tight integration of motion control components and semiconductor tools. Combining the motion controller and servo amplifier in a single, fully integrated package eliminated a substantial amount of system wiring. Bringing all signal and interface connections out through compact interface connectors to a backplane further reduced cabling and wiring.

These features gave MPA tool designers ultimate flexibility in laying out the motion-control installation scheme. They created a custom PCB board containing the required interface signal connections to the motion controllers in a shape most appropriate for a given tool configuration.

More precise and finer motor current control is a prerequisite for designing tools with higher position accuracy and repeatability. High-speed networks facilitate reductions in wafer pre-align times, which translate into improved productivity for tool users. Compact construction and space saving backplane designs ease integration complexities as well.



Author Information

Edited by C.G. Masi, with information supplied by Agile Systems. C.G. Masi is a senior editor at Control Engineering. Contact him at charlie.masi@reedbusiness.com .




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.