Assessing the interface: Industrial customers and the utility

Two factors should be high priorities for the engineer designing industrial control systems and their utility interface.

09/11/2012


For years, some have assumed that the interval or “smart” meter would be the interface between an industrial customer and the utility. In other words, that communications data, curtailment requests, generation requests, and price signals would all occur through an advanced metering infrastructure (AMI) system.



Based on an assessment of the systems themselves and the needs of industrial customers, however, the AMI approach may not be the only, or even the most desired, interface. And those two factors should be high priorities for the consulting specifying engineer designing industrial control systems and their utility interface.



This issue has big implications for industrial customers because the design and features and functions of their industrial control system is going to depend on which direction they take. 

 

Let me explain. First, the bidirectional communications that a smarter grid will require can be handled independently of the interval meter AMI. Second, meters and AMI are largely proprietary systems, potentially leading an industrial customer to vendor lock-in. Third, it’s early in the AMI industry and technical alternatives exist. Consequently, there will be winners and losers; if a utility’s AMI vendor goes belly-up or migrates to different technology, that could mean stranded assets for the customer.

 

A different approach would use the meter solely to record usage and employ a separate appliance or gateway for bidirectional communications.

 

This approach has several advantages, besides avoiding dreaded vendor lock-in and stranded assets. One advantage is that the gateway could use a high-speed Internet connection rather than be hobbled by the communication limitations of the AMI. Or the gateway could use dedicated communication lines to the electric utility, providing greater bandwidth for greater functionality. The appliance-as-portal option also gives the industrial user more flexibility for interconnections with other systems and, therefore, the data for greater insight into its operations.

 

Today, AMI protocols are vendor specific. If you purchase a meter from vendor X, you must also purchase the data collection and protocol system from vendor X. In contrast, the gateway approach allows the utility and the industrial customer to immediately employ industry standard protocols such as IEEE Standard 1815 (aka DNP3), which provides the means for robust security.

 

What remains uncertain at this point is whether both options will be available from the utility. Consulting specifying engineers and their industrial customers should discuss this issue with the utility. If both options are available, then compare the two options’ costs, design challenges, features, and functions, taking into account the projected future needs of the industrial customer.

 

It’s important to understand that the cost-benefit ratio for AMI remains unproven; it’s still being evaluated. Much of the current deployment of AMI has been subsidized by 50% by the U.S. Dept. of Energy’s Smart Grid Initiative Grants in the US. Without those incentives, it is unclear whether the deployments will continue to spread, or be profitable. Some state regulators remain unconvinced that AMI is a cost-effective expenditure of rate payers' money.

 

Finally, because smart meters and AMI are a programmable system, greater potential exists for hackers accessing the system, a threat that has already been observed as noted in my previous blog.

 

Perceived, widespread AMI adoption alone is not a good basis for an engineer to make an assessment of whether that's an appropriate technology choice. He or she needs to make a professional judgment about the systems themselves, and their technical capabilities, and not be swayed by the apparent spread of AMI systems. Talk to the utility to which you are designing your customer’s interconnection. You may find that other, more “future-proof” alternatives are available.


Sam Sciacca, PE, senior member of IEEE, president of SCS Consulting LLC, Winsted, Conn.Sam Sciacca is an active senior member in the IEEE and the International Electrotechnical Commission (IEC) in the area of utility automation. He has more than 25 years of experience in the domestic and international electrical utility industries. Sciacca serves as the chair of two IEEE working groups that focus on cyber security for electric utilities: the Substations Working Group C1 (P1686) and the Power System Relay Committee Working Group H13 (PC37.240). Sciacca also is president of SCS Consulting.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.