Back to Basics: Finding, measuring the right product attributes

Tutorial: What characteristics of a product are most important, and how do you measure them? A recent Ask Control Engineering blog question dealt with finding a sensor that would be able to tell if the liquid flowing through a pipe was water or orange juice. This question brought up the larger issue of defining product attributes and finding an appropriate approach for measuring them. What kind of sensors should you use?

12/20/2010


A recent Ask Control Engineering blog question dealt with finding a sensor that would be able to tell if the liquid flowing through a pipe was water or orange juice. This question brought up the larger issue of defining product attributes and finding an appropriate approach for measuring them.

This case is relatively simple. It isn’t hard to tell the difference between orange juice and water. If you think about it, there are several obviously different characteristics that can be measured:

  • Color and opacity (using simple machine vision);
  • Acidity (using pH or conductivity);
  • Sugar content (using specific gravity); and
  • Thickness (using viscosity).

If you think long enough, there are probably others you could come up with. The question is to identify with the one of those that is the most positive and easiest to measure. In this particular case the suggested answer was conductivity.

Some applications like this one are fairly straightforward. Others are more subtle and harder to analyze. The issue has gained relevance in process industries over the last few years as manufacturers have had to deal with a growing level of variability in feedstocks. This was a discussion point in the article, Solving Process Instability (Control Engineering, June/July 2010). More companies are finding that their traditional supplies of raw materials and fuels may no longer be available or have become too expensive. The material that is substituted may not be the same, and that can cause instability in a process or change the characteristics of the final product.

The first challenge to solving the problem is to figure out exactly how the product is different. What attribute has changed? What is different about the chemical feedstock from Source B when compared to Source A? Or, how has your longstanding supplier changed its process?

Returning to our orange juice producer, let’s say the company normally buys concentrate from Florida, but, for whatever reason, decides to start buying from California. The resulting juice is a little different, and you have to determine what that difference is. Is it a slight change in acidity? More or less fructose? If you have to compensate for the change, even a very subtle change, you have to find a way to identify and quantify it, and that means finding the right kind of measuring device.

Your initial effort to identify the difference or differences may require the help of lab, but once you know what you have to look for, the choice of a sensor on a production level may be yours. Depending on the specificity of the attribute, there may be more than one option. To complicate things further, more than one attribute may be in play. Getting orange juice concentrate from Brazil may add another to the list. Imagine the number of factors that might be in play when evaluating a product as complex as crude oil.

This specificity of matching sensor and attribute is one of the reasons that there are occasional product contamination scandals. If you have no reason to expect that cyanide has been mixed into your orange juice outside of deliberate and malicious tampering, you probably aren’t going to look for it. Performing broad spectrum analysis to look for every conceivable contaminant is not practical on a day-to-day basis with every product. Unless the cyanide is capable of changing one of the other attributes, you may not realize it’s there. This has been the reason behind some recent incidents in the pharmaceutical industry. We’ll assume that the affected companies expanded their ongoing product testing procedures.

However complicated the situation is, it eventually comes back to basic analysis.

- Peter Welander, is content manager for Control Engineering. Reach him at pwelander(at)cfemedia.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.