Bigger is better in the wind generator market

The average power rating of a utility scale wind generator was 1.75 MW in 2011 and is expected to rise to nearly 2.4 MW by 2017.

05/13/2013


IMS Research (acquired by IHS, Inc.)For the foreseeable future, wind turbines, and consequently wind generators, will continue to get bigger and bigger—both in terms of average physical size and in the average output power rating of these machines.

The average power rating of a utility scale wind generator was 1.75 MW in 2011 and is expected to rise to nearly 2.4 MW by 2017, according to a recently released report entitled "The World Market for Wind Generators" from IMS Research, now part of IHS.

That may not seem like a large increase, but it equates to roughly 250 more homes per wind generator being supplied with clean renewable power, based on average U.S. electricity consumption rates. With many wind farm projects consisting of more than 100 wind turbines, the relatively minor increases in average output power per turbine can add up rapidly. The number of additional homes potentially supplied by wind power can increase even more in other regions of the world where electricity consumption per household is much lower than in the United States.

"Based on the physics principles involved, a relatively small increase in a wind turbine's blade length and the corresponding swept area exponentially expands the amount of wind energy that is captured and then converted to electricity by the generator," said Greg Johnson, generators analyst at IHS. "Therefore, the utility-scale wind generators market continues to move toward generators with higher output power ratings to keep pace with the growing size of wind turbines."

One factor that will contribute to the increase in average wind generator output power is the expected rapid growth of the offshore market. While the onshore wind generators market is expected to go through a period of volatility and subdued growth through 2017, the offshore market is forecast to grow quite substantially at a 32.4% compound annual growth rate (CAGR) in terms of megawatts shipped over the same period. Offshore wind generators are much larger than their onshore counterparts. The average offshore wind generator had an output power rating of 3.7 MW in 2011 and is projected to grow to an astounding 5.4 MW by 2017.

"The physical size of these electrical machines will also increase considerably as the wind generators market steadily shifts to using more medium and slow speed generators," Johnson said.

In order to operate at medium and slow speeds, a wind generator’s physical size greatly increases in order to incorporate the large number of magnetic poles required. For example, a standard high-speed wind generator consists of 4 magnetic poles, while a slow-speed, direct-drive generator can have upwards of 50 magnetic poles and a diameter of more than 7 m. Based on these factors, wind generator suppliers must keep pace with the market demand for bigger wind generators and adjust their manufacturing procedures and facilities accordingly.

Published in March 2013, "The World Market for Wind Generators – 2013 Edition" provides an accurate portrayal of how the market for wind generators is forecast to perform through 2017 and offers insight into which regions and product categories will experience the fastest growth in the future.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Motor specification guidelines; Understanding multivariable control; Improving a safety instrumented system; 2017 Engineers' Choice Award Winners
Selecting the best controller from several viewpoints; System integrator advice for the IIoT; TSN and real-time Ethernet; Questions to ask when selecting a VFD; Action items for an aging PLC/DCS
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
click me