BinderBus seeks to spark distributed network revolution

For a decade, distributed device networks promised dramatically lower costs and more openness. However, technological limits kept market penetration slight and slowed growth, even though many device networks were eventually established.SerCoNet Ltd. (Netanya, Israel) says these constraints include buses that: sacrifice data-rate to allow longer distance; use master/slave communications an...

05/01/1999


For a decade, distributed device networks promised dramatically lower costs and more openness. However, technological limits kept market penetration slight and slowed growth, even though many device networks were eventually established.

SerCoNet Ltd. (Netanya, Israel) says these constraints include buses that: sacrifice data-rate to allow longer distance; use master/slave communications and numerous nodes to achieve determinism; or increase distance with costly fiber-optics and coaxial cable. To overcome these limits, SerCoNet recently introduced its 'BinderBus' architecture.

The firm reports BinderBus supports unlimited nodes distributed over an unlimited distance. Different topologies, like ring or trunk line with drops, can be chained together. The network can be configured as master/slave or peer-to-peer. There are built-in diagnostics and troubleshooting. The data rate is 1 to 5 Mbs over unshielded twisted pair (UTP) cable.

Node is the key

The key to BinderBus is its patented node, an all-in-one microcontroller, power supply, and network repeater. Inventor and company ceo, Yehuda Binder, says the most effective networks are based on point-to-point communications. BinderBus' basic principle is that each network segment connects only two nodes with the 22- to 26-AWG UTP carrying power and data. Nodes are connected to field devices. Each network segment is independent of the rest of the network. Since each node can be a power supply, overall network range is extended. Network protocol is TCP/IP modified to support determinism.

BinderBus nodes include a network's three necessary elements: transceiver chip set, data-link handling, and software driver. A node is slightly larger than a cigarette pack and can be DIN-rail mounted or integrated in devices.

Each node has three network interface ports connected only to another BinderBus node. Power input and output ports are included. There is an RS-232 port for PC or PLC connection. Eight programmable inputs and eight programmable outputs are programmable for discrete or analog (4-20 mA or 0-5 V dc). A plug-in interface port allows Ethernet, other buses, or video/audio to be added.

Bandwidth can be segmented into master/slave and peer-to-peer. Part of the network can be deterministic master/slave for control leaving the rest of the bandwidth for peer-to-peer data communications. The partition can vary from network to network, or within the same network at different times.

If a failure occurs, such as a short or open line, the network immediately determines its location for quicker repairs. Each node retains its I/O function control, and the network remains active in all nodes still connected. Short-circuit protection and EMF filters enhance network and data reliability.

Node numbers are assigned automatically. One node, preferably the one to which the programming platform (PC) is connected, is assigned number 128. The node connected to the left port recognizes its position and assigns itself address 127 and so on. Likewise, nodes connected to the right are assigned addresses in ascending order. Adding or removing nodes is immediately detected and their exact locations are identified.



BinderBus can connect different network types and topologies within its network architecture.

For more information, visit www.controleng.com/freeinfo .





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.