Boilers: Types, applications, and efficiencies

03/22/2013


Steam boilers

Figure 5: This low-pressure Scotch marine boiler has a dry-back design. Steam generating boilers require large volumes for the phase change of water to steam to reduce operational issues related to small water to steam interface area.Steam boilers are applied in many applications for building heating and many forms of process heating and humidification systems. The use of steam boilers has dropped in recent years, but they still remain the choice method of distribution energy for heating in large facilities such as hospitals, campuses, and some downtown areas of major cities.  

Steam boilers can be classified in several ways; however, they are either low pressure (15 psig or less) or high pressure (greater than 15 psig). They can be fire-tube Scotch marine with wet- or dry-back design, cast iron, or water tube design. Steam generating boilers require large volumes for the phase change of water to steam to reduce operational issues related to small water to steam interface area.

Steam boilers also require proper water chemistry for proper operation. Boiler feed water/makeup must be low in hardness (typically 2 grains/lb or less) with low total dissolve solids in order to reduce water surface tension. Water surface tension is a primary cause of water spouting within the boiler’s water to steam interface area. Increased “water spouting” can result in rapid fluctuation of the water level in the boiler, which is indicative of water carryover from the steam generation volume of the boiler into the steam piping header. Water carryover from the boiler to the steam header usually leads to the boiler shutting down on its low water safety. If the steam header becomes partially or fully water-logged, complete shutdown and drainage of the system is required.

Steam boilers and steam piping systems are large thermal flywheels. The system requires a substantial start-up time for boiler and piping system warmup. Large piping system usually require warmup in multiple sections to avoid or minimize vacuum (sub-atmospheric) pressure forming during the warmup process due to steam condensing back to water. Steam systems cannot react to rapidly changing system demands if the boilers are staged on from a cold state. Therefore, steam boiler staging is based upon weather, steam header pressure, and the boiler operator’s experience rather than the staging controls used in hot-water boiler systems.

While steam is an extremely effective method of transporting thermal energy (considering the latent heat of vaporization) and requires no pumping on the vapor side of the system, steam boiler systems are inherently inefficient. Recent experience indicates the natural gas to steam plant output (thermal efficiency) to range from 55% to 65% based on measured usage data for an 180,000 lb/hr plant.

 

 

Summary

Boilers and water-based heating systems are available in a wide variety of types and configurations. Determining the boiler type for a specific application is the responsibility of the consulting engineer in conjunction with the owner or operator of the facility. Applying the boiler in most efficient configuration is the responsibility of the consulting engineer.

The table of boiler types included in this article is not intended to be complete, but only a reference to basic types and configurations available. Fabrication materials vary between manufacturers along with patented designs.

The most efficiently designed boiler-based system uses the most efficient boiler and system configuration for the application. Controlling the system to meet the system demands is the major key to overall efficiency. Using the simplest but most effective boiler plant/system staging controls with the feedback of building heating requirements on a minute-by-minute basis is the key to optimizing any hydronic heating system’s efficiency. System feedback input includes continuous monitoring of flow requirements and supply-return water temperature differential, using this data to calculate real-time requirements of the facility, and then making decisions on the staging of entire heating plant.

Variable primary-only boiler systems can be accomplished. However, this must be achieved with the input of the boiler manufacturer’s engineering/applications group. Special attention must be given to maintain minimum tube velocity required by the boiler manufacturer.

Condensing boilers offer the greatest energy efficiency if properly applied. Small terminal coils (such as terminal boxes, finned tube radiation, cabinet heater, etc.) are not designed for low temperature water. Therefore, special care must be used in selecting these coils. Condensing boilers can be applied to existing systems if proper precautions are realized by the consulting engineer and the facility owner/operator. If the existing system is to take full advantage of the efficiency potential of these boilers, every coil must be evaluated for performance at the lower water temperatures. The alternative is to apply these boilers with the proper controls to allow for noncondensing water temperatures during peak heating periods. 


Michael E. Myers is senior mechanical engineering manager at WD Partners in Dublin, Ohio, where he is responsible for managing and directing the mechanical engineering division. He has more than 33 years of experience in HVAC, plumbing, and fire protection engineering. He is a former ASHRAE distinguished lecturer, former ASHRAE chapter president and a previously published co-author on HVAC design.


<< First < Previous 1 2 3 4 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.