Boilers: Types, applications, and efficiencies


Applying condensing hot water boilers

Condensing water boilers are increasingly desired by many building owners. This is due to the very high efficiency of these devices. Typical thermal efficiencies range from 90% to 98%. Many building owners are asking their consultants to use these devices for new, replacement, and retrofit applications. However, this can present a challenge for all of these applications unless the consulting engineer/designer and the owner fully understand the limits of using a boiler designed for condensing temperatures.

Condensing boilers are low water temperature devices when applied in the condensing temperature range. (Note: There is at least one boiler manufacturer that is currently advertising a condensing boiler with 160 F minimum return water temperature.) In order for the flue gases to be in the condensing temperature range to achieve the maximum heat transfer of the fuel energy to the water, the supply water temperature is ≤130 F with return water temperatures as low as 80 F. As with any counter-flow heat exchange device, the leaving temperature of the heated fluid (water in this case) cannot be greater than the leaving temperature of the hot side or heating medium (combusted fuel in this case). The lower the fuel gas temperature, the more efficient the boiler becomes as more heat is extracted from the combustion gases.

Figure 4: Cast iron, straight water tube, and fire tube boilers require special consideration to avoid damaging the boiler. A high-pressure 180,000 lbs/hr steam plant uses a multiple fire tube boiler.The drawback of this low water temperature is applying these in a replacement or retrofit application. Due to the low supply water temperature, most heating coils that were selected at a higher entering water temperature will not perform well at this lower water temperature. This is the case with many replacement and retrofit projects. Therefore, thoughtful consideration must be given at a minimum to determine the performance of these older existing coils with the lower water temperature. Replacement of at least some of the coils will be necessary. This is especially true of heating coils in small zone devices such as variable volume terminal boxes, cabinet unit heaters, finned tube radiation, and convectors as these devices are usually designed for 180 to 200 F entering water temperature.

However, condensing boilers can be applied in existing systems designed for higher water temperatures if the boilers are applied in a hybrid condensing/noncondensing design. This allows the boilers to function in the condensing range during the partial heating load periods (when condensing water temperatures can be used) while allowing the boiler to produce noncondensing supply water temperatures (typically ˃130 F) during the higher heating load periods. The boilers will then function at a lower efficiency, but greater water temperature at a reduced overall heating output. A word of caution is required related to boiler flue material: The boiler flue material must be capable of withstanding the corrosive effects of condensed flue gases as well has flue gas temperatures produced when operating out of the condensing temperature range.

New heating water systems using condensing boilers must take into account the requirement for larger than “normal” heating coils required in all air handling equipment. Variable air terminal boxes and finned tube radiation must have the lower water temperature accounted for in the sizing selection process. Hot water coils in terminal units, in this writer’s experience, are a minimum of two rows and typically 3 to 4 rows to provide more surface area for heat exchange.

Modular condensing boilers are almost always applied in a primary-secondary piping arrangement with each boiler requiring a dedicated return water pump to ensure proper flow within the boiler. As previously mentioned, the use of automatic flow balancing valves should be used for each boiler in the supply water (leaving side) piping to further help ensure proper flow throughout the operating flow and pressure range of the entire heating water system.

JAY , NJ, United States, 04/02/13 09:05 AM:

Excellent article!
Mohammed , Non-US/Not Applicable, United Arab Emirates, 04/03/13 12:55 AM:

Very good , what about control systems?
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security