Calibrating flowmeters

Getting the kind of accuracy you want isn't easy, but it can be done.

01/14/2011


Dear Control Engineering: I saw a photo of a flowmeter testing setup that seemed hopelessly complicated. What’s the point of that, and is it really necessary?

ABB’s “Monster” flow calibration rig in Shanghai The photo you saw may have been the new ABB testing facility in Shanghai, China. ABB has a large instrumentation manufacturing facility there, and that normally requires appropriate testing capabilities. In this particular case, they have built in support to test everything from ½ to 96 in. diameter flowmeters, so that means they need the ability to control flow precisely from 0 to 50,000 gpm.

Testing flowmeters is a difficult process, because there is no practical way to do it without simply pushing whatever volume of liquid you need through the device. To make matters worse, you have to calibrate one flowmeter with another one that is even more accurate. If you follow the old rule of thumb, you need a measuring device that is capable of ten-times the accuracy of the unit you want to check. In other words, if you have to calibrate a flowmeter to ±1 gpm, the flowmeter that is your standard has to be able to read ±0.1 gpm. Given the high accuracy of instrumentation these days, that can be a serious challenge. I have seen flowmeters that are used as calibrators that are capable of accuracy of ±0.015%. Once you get to this level, calibration involves measuring liquid volumes and other ways to boost the practical accuracy of a device.

But that’s just the start. The dynamics of liquid flowing through a pipe are messy with turbulence, velocity profiles, entrained gas, and the like. If you study that picture, you’ll see long sections of straight, horizontal pipe that minimize those effects. Each pipe joint will be smooth to avoid any obstacles that will disrupt laminar flow. I’ll even wager that the water itself is calibrated, in that its chemical composition is analyzed, its precise density known, and temperature regulated. There will also be critical weighing apparatus to measure specific volumes of water. All of these are there to eliminate any variability to the process.

The new lab in Shanghai is approved by the Shanghai Institute of Measurement and Test Technology (SIMT), which is itself accepted by a group of international testing bodies, including UKAS, NIST, DKD, NVLAP, NATA, and ILAC. All things considered, it is a very complex process but necessary to deliver the kind of accuracy that users demand.

Peter Welander, pwelander(at)cfemedia.com

Also read:

Custody transfer—flowmeter as cash register

Advances in flowmeter technology

Flowmeter challenge: Right size, right design



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.