Case study: Bundling performance

Although LCCA of individual system alternates is often valuable, it is important to recognize the whole building return on investment that is the basis for a building’s overall success. A brief example of such an analysis is included here for the Stanford Yang and Yamazaki Environment and Energy Building.


Figure 4: This LCCA shows six sequential strategy bundles and the predicted summation building bundle in red at the time of design. Courtesy: ArupThe results show the diversity of financial returns when energy investments are grouped into load reduction, passive systems, active efficient systems, energy recovery, self generation, and renewable energy offsets. The bold red line indicates the bundled performance of all strategies taken together. The results of this analysis helped convince Stanford University to elevate the performance of all future new and retrofit projects to a LEED Gold/Platinum level of energy performance.

Post-occupancy review

Figure 5: This chart models the effect of a post-occupancy performance audit and incentive award. Courtesy: ArupEnergy consumption models developed during building design rarely match actual operating energy consumption when buildings are built and operated. Instead, energy models produced during design are intended to be indicative of relative performance between a code-derived baseline model (e.g., ASHRAE 90.1 or Title 24 compliant) and a design model reflecting the actual building design.

Figure 6: This conceptual diagram illustrates the stack driven natural ventilation system. Courtesy: ArupThe focus on relative versus actual consumption is widely considered acceptable and is attributed to differences between simulation assumptions and actual operating conditions that influence energy consumption. Such conditions include changes to scheduling of equipment and lighting, occupancy density and behavior, climate variation, construction variances, and improper or incomplete commissioning. Some of these conditions are appropriate and can be addressed in a calibrated model, while others reflect an area of physical or operational deficiency that should be remedied.

Comparison and scenario evaluation of the Y2E2 facility post-occupancy showed that it uses more energy in absolute terms than the design stage model predicted. It also showed that the building saves more energy than initially predicted. As a result, there are larger absolute cost savings that actually provided a better return on investment. It should be noted that the percentage increase in relative energy performance remained consistent and only the absolute values varied. The caution from this review is that even though building physics can predict the relative performance of a building well, the absolute measure is more difficult, highlighting the need for rigorous sensitivity studies.

Roberts is an associate principal and energy and resources business leader in Arup’s San Francisco office. His experience ranges from climate-responsive building engineering and consulting to community energy systems, net-zero energy, and climate-positive design. Rhodes is a senior engineer in Arup’s San Francisco office, specializing in high-performance mechanical system design and energy monitoring. Hespe is a senior energy and sustainability designer in Arup’s San Francisco office, specializing in passive and ecological building design.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security