Challenges of Motor Selection and Sizing

The range of sizes, types, and configurations of electric motors can seem endless. Here are a few ideas for navigating the choices.

06/12/2012


CFE Media - machine and motion control - motor-drive iconParadoxically, electric motors are simple, yet complex. Their simplicity comes from having a single purpose: to convert electrical energy into mechanical energy. Their complexity comes from myriad applications where motors are used. A motor’s usefulness is in how it is applied. A spinning motor with nothing connected to its shaft is a waste of time, money, and energy.

However, the value of a motor is how efficiently and effectively its mechanical energy operates conveyors, fans, pumps, and other types of industrial equipment. To specify and apply electric motors, engineers must thoroughly understand the electrical and physical characteristics of the motors and the applications in which they are used.

Terms such as torque, horsepower, inertia, friction, acceleration, and load come to mind when designing motorized equipment. And there are formulas that apply to every parameter. For example, the relationship between horsepower, torque, and speed is fairly straightforward and is calculated using simple mathematics:

Horsepower = (torque in pound-feet x motor speed in RPM)/5,250

Torque and speed can be found by changing the formula algebraically. However, nothing happens unless the motor actually starts spinning, which requires it to overcome inertia of both the motor and its load. This is why pre-EPAct (Energy Policy Act of 1992) motors require five or six times their full-load amps (FLA) to come up to speed, and NEMA premium efficiency motors can require eight to 10 times FLA to reach operating speed.

Inertia and friction work together to resist starting a still motor. Although coefficient of friction is another frequently used motor application term, it can’t be found through direct calculations; it must be measured experimentally. The ratio of friction force to normal force is a simplified definition of the coefficient of friction.

While the coefficient of friction depends on the properties of two materials that come into contact as with motor shaft and bearings, for example, there are other factors that come into play. Temperature, velocity, atmosphere, shape, and lubrication affect the coefficient of friction as well. Obviously, lowering friction increases motor efficiency.

Motors are used in a plethora of applications. While many books about motor design and applications have been written, they barely scratch the surface of possibilities. One of the sidebars with this article gives you an idea of how complex the calculations can be if you want to consider all the relevant variables connected to an application. If you read this article online, there is additional detail and a second example.

Jack Smith is an industry consultant and writer, and served as an editor for Plant Engineering. Reach him at jacksmith.writes(at)gmail.com.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.