Combustion flue gas analyzer helps improve boilers, incinerators, etc.

Rosemount Analytical 6888 analyzer helps reduce emissions and improve efficiency of combustion processes.


Emerson has released its latest solution for combustion flue gas analysis, the Rosemount Analytical 6888 in-situ O2 analyzer. Emerson has released its latest solution for combustion flue gas analysis, the Rosemount Analytical 6888 in-situ O2 analyzer. The 6888 analyzer provides accurate measurement of the oxygen remaining in the flue gases coming from combustion processes such as boilers, incinerators, kilns, process heaters, and industrial heating furnaces. By maintaining the ideal level of oxygen in the flue gases, optimal efficiency is achieved and the lowest levels of NOx, CO, and CO2 are produced.

The design of the 6888 places a zirconium oxide sensing element at the end of a probe which can be inserted directly into a flue gas stream. Probe lengths are available from 18 in. to 12 ft, and a slip mounting option provides the ability to mount a long probe at any insertion depth. Signal conditioning electronics reside in the head of each probe, eliminating the need for expensive signal cable.

The 6888 is fully field-repairable. All active components can be replaced including the diffuser/filter, sensing cell, heater, thermocouple, and all electronics cards. A dual-channel operator interface unit provides an easy-to-use method of set-up, calibration and failure diagnostics.

The company says the new internal electronics capabilities of the unit offer unique optional features never before possible in an O2 analyzer:

• Calibration recommended diagnostic – Since the calibration frequency of an oxygen analyzer is highly application-dependent, the Xi electronics of the 6888 provide an on-line diagnostic that determines when calibration should be conducted. This feature greatly reduces unneeded calibrations, technician time, and calibration resources. The feature can trigger a fully automatic calibration by sequencing solenoids to introduce calibration gases to the sensing cell. Calibrations can be conducted on-line while the furnace is in operation.

• Continued operation through process upsets – If process upsets cause flue gas temperatures to exceed the normal sensing cell heater temperature (736 to 1,357 °F), the heater is turned off, the process is permitted to heat the sensing cell, and the electronics calculate the oxygen content of the flue gases on the fly. If process upsets cause a reducing condition (flue gas oxygen levels decline to zero), a stoichiometer feature provides an indication of the level of oxygen deficiency during this event.

• Plugged diffuser diagnostic – In applications where there is a heavy particulate loading in the flue gas stream, this feature notes the return-to-process time after calibration gas is turned off. As the time extends, the diagnostic will indicate the need for a diffuser replacement.

“As the needs and compliance demands for flue gas analysis become greater, we are making our Rosemount Analytical instruments more and more accurate and easier to use to meet our customers’ requirements. The 6888 promises real savings in time and resources for users, as well as a way to achieve compliance with government regulations,” said Dave Anderson, marketing director, Emerson Process Management, Rosemount Analytical.

Edited by Peter Welander,

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security

(copy 5)