Controllers balance performance with closed-loop stability

If high-speed response is not required, any continuous process can be controlled easily enough. A feedback controller need only measure the process variable, determine if it has deviated too far from the setpoint, apply the necessary corrective effort, wait to see if the error goes away, and repeat as necessary.

05/01/2000


If high-speed response is not required, any continuous process can be controlled easily enough. A feedback controller need only measure the process variable, determine if it has deviated too far from the setpoint, apply the necessary corrective effort, wait to see if the error goes away, and repeat as necessary. This closed-loop control procedure will eventually have the desired effect provided the controller is sufficiently patient.

Unfortunately, patience is not generally considered a virtue in process control. A typical controller will apply a whole series of corrective efforts well before its initial efforts have finished affecting the process. Waiting for the process to settle out every time the controller makes a move generally leaves the process out of spec for so long that the controller becomes virtually useless.



A child playing on a swingset uses closed-loop
instability to keep the swing going.

Not so fast

On the other hand, a controller that tries to eliminate errors too quickly can actually do more harm than good. It may end up over-correcting to the point that the process variable overshoots the setpoint, causing an error in the opposite direction. If this subsequent error is larger than the original, the controller will continue to over-correct until it starts oscillating from 100% effort to 0% and back again.

This condition is commonly called closed-loop instability or simply hunting . An aggressive controller that drives the closed-loop system into sustained oscillations is even worse than its overly patient counterpart because process oscillations can go on forever. The process variable will always be too high or too low. Worse still, the oscillations can sometimes grow in magnitude until pipes start bursting and tanks start overflowing.

Stabilizing techniques

The Ziegler-Nichols closed-loop method is arguably the most straightforward approach for designing stable control loops. It applies to PID controllers, which can be made more or less aggressive by adjusting their proportional (P), integral (I), and derivative (D) gains. The higher the gains, the harder the controller works to eliminate errors.

Ziegler and Nichols found that if they gradually turned up the proportional gain on a P-only controller it would eventually start over-correcting and force the process into sustained oscillations. By reducing the gain by 50% at that point, the loop would become stable again. Simple enough!

Less obvious is how to add integral and derivative action to make the controller even more responsive without risking closed-loop instability. Ziegler and Nichols determined through trial and error that increasing the integral and derivative gains in a prescribed manner would actually allow the proportional gain to be increased to as much as 75% of the value that caused instability. Their famous 'tuning rules' allowed control engineers for the first time to design two-term (PI) and three-term (PID) controllers that would keep the closed-loop system stable, yet fast enough to eliminate errors in a timely manner.

A child on a swingset, for example, uses closed-loop instability to keep the swing going. By applying a control action while the swing is still in motion (i.e., by 'pumping'), the child can force the swing back and forth past its resting position. Conversely, a process controller would try to keep the closed-loop system stable by forcing the magnitude of Q to grow ever smaller.


Author Information

Vance J. VanDoren Ph.D., P.E.,consulting editor, is president of VanDoren Industries, West Lafayette, Ind. Email him at controleng@email.msn.com .




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
System integration: Best practices and technologies to help; Virtualization virtues; Cyber security advice; Motor system efficiency, savings; Product exclusives; Road to Hannover
Collaborative robotics: How to improve safety, return on investment; Industrial Internet of Things, Industrie 4.0: World views; High-performance HMI, Information Integration: OPC and OMG
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
click me