Cycling through fan options

Owning and operating costs, noise, environment, availability, service duty, and power are but a few of the factors engineers need to consider when selecting a fan for a long and efficient life. Matching the best fan selection to use and performance is the primary goal. With new construction, the designer has time to design the air-moving system and select the best fan type for the use.

03/01/2008


Web Extra: Listen to a podcast with the author on this subject. Click here .


Owning and operating costs, noise, environment, availability, service duty, and power are but a few of the factors engineers need to consider when selecting a fan for a long and efficient life.

Matching the best fan selection to use and performance is the primary goal. With new construction, the designer has time to design the air-moving system and select the best fan type for the use. When a fan needs replacing, the schedule may not always allow a new “design” to take place without extensive system downtime.

Table 1 in Chapter 18 of the “2004 ASHRAE Systems and Equipment Handbook” shows different types of fans and fan design characteristics along with performance and usual applications. Fan manufacturers also have selection guidelines to aid in proper fan selection.

Fan service life ranges from 15 years for propeller fans to 25 years for centrifugal fans, according to studies published in Table 4 of Chapter 36 in the “2007 ASHRAE Applications Handbook.” Obviously, factors such as installation, environment, maintenance, and operating conditions affect the service life. In addition to these factors, what other considerations are there in the fan lifecycle selection? Figure 1 shows some items to consider.

Initial costs (owning) and power and maintenance cost (operating) are generally the primary selectors when choosing a fan. For a fan to last 20 years, proper maintenance must be provided, which includes designing adequate installation and maintenance space at new construction. The installation should allow fans to be inspected, disassembled, and greased.

Fans installed with proper duct inlet and outlet connections will lead to higher operating efficiency, less power use, and quieter operation. Fan bearing noise, vibration, and belt condition/slippage are items that should be inspected for regularly in an effective maintenance program.

Where floor space is not available, an inline type fan might be needed. Inline centrifugal fans generally are noisier and require sound attenuators that add to the initial cost life. Maintenance on a suspended fan also may be more difficult due to less-than-desirable access.

The need for flexibility in design, future air volume, and the fan's ability to operate at less than peak air volume (i.e., part-load efficiency) are additional parameters of fan lifecycle selection. The fan laws are mathematical formulas that predict fan performance and power requirements for a series of aerodynamically similar fans based on varying the fan size, fan speed, or air density given the volume or pressure are fixed. The fan laws and explanations for use are available in ASHRAE handbooks and in most manufacturers' fan catalogs. The fan laws also will help identify new performance characteristics of an existing fan to help determine if a more efficient fan of differing size and speed with a better lifecycle cost can be used.

Bigger may be better

Consider a fan operating continuously at 8,760 hours/yr at an energy cost of $0.15/kWh. Airflow is 5,000 cfm at a pressure of 1 in. of water. A manufacturer's catalog for centrifugal utility fan may show a reasonable selection for a 24-in. diameter fan requiring 0.9 bhp at 690 rpm, while a 20-in. diameter fan costing $300 less requires 1.25 bhp at 1,005 rpm.

It would appear that both fans require a 1.5 hp motor, but the larger diameter fan operating at a slower speed will require less power and potentially last longer with fewer bearing problems and operate more quietly, thus making the lifecycle cost more beneficial for the larger diameter fan. Installation and maintenance costs are assumed the same for both fans. The power required includes fan drive losses of 3% to 5%.

The energy cost is calculated by the following method:

number of hours/yr x power (bhp) x 0.746 kW/bhp x dollars/kWh

Using the formula, the energy costs are:

Fan size Energy cost

24 in. $882

20 in. $1,225

Annual savings: $343 (less than 1 year payback).

It is important to consider both the fan and system design when defining the fan lifecycle cost. The operational characteristics may be the driving factor in a long-term scenario, but if the fan cannot be (or is not) properly maintained, the energy performance may not be a factor as the fan may require early replacement. In this case, the fan lifecycle cost is limited to initial cost (owning) and energy cost (operating) for a shorter time period.


Author Information

Banse has spent the past 25 years in healthcare facility design and engineering. He is a member of CSE 's editorial advisory board.




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.