Deadline for revised hazard communication standard coming up

Safety data sheets and product labels need to be revised by June 1, 2015. The revisions include the mandatory use of red color, the potential need for multiple languages if shipping to other countries, and many other regional regulatory requirements for compliance in the global marketplace.


There is no avoiding it: Manufacturers, formulators and distributors need to revise their safety data sheets (SDSs) and product labels by June 1 this year. That revision comes from the Occupational Safety and Health Administration (OSHA) revised Hazard Communication Standard, which is the result of the third revision of the Globally Harmonized System for Classification and Labeling of Chemicals (GHS), which first ended up adopted in 2003.

The GHS system will gradually end up adopted on a worldwide basis. The following will explore the background of the regulation, some of the issues raised in adopting it, and some of the challenges that chemical producers and shippers will encounter in complying with the GHS.

These challenges include the mandatory use of red color, the potential need for multiple languages if shipping to other countries, various U.S. state issues like New Jersey's "Right to Know" that go beyond OSHA's requirements, and many other regional regulatory requirements for compliance in the global marketplace. The reality is virtually every label for a hazardous chemical product is subject to change, and will in many cases require changes on an ongoing basis into the unforeseeable future.

Complicating the environment is the chemicals industry faces a major challenge due to the fact large companies have decentralized their hazard communication work processes.

In addition, many medium to smaller sized companies don't have the internal resources to create their own Safety Data Sheets and must use outside resources. Because of the additional requirements in the 2012 OSHA and GHS regulations to undergo implementation starting June 1, regardless of how or where a Safety Data Sheet ends up created, automated systems will need to be capable of pulling the information from Section 2 of the SDS onto labels. The current complex nuances of labeling range from having many different products of various shapes and sizes, the need to respond to customer requirements, the need to access transactional data, languages, branding information, and more.

Past Rules

Before adoption of the GHS, multiple systems and definitions of hazard were the rule. Even in the United States there have been—and to some extent still are—different definitions of various physical and health hazards presented by chemical substances. Looking at just two hazards such as flammability and oral toxicity, there is plenty of disparity in definitions, and how the GHS has created a common basis for these two frequently encountered hazards. These hazards were compared based upon 2009 regulations because other countries have already adopted, or are in the process of adopting, GHS definitions.

For instance, the European Union (EU) adopted GHS for substances in 2010 and the classification and labeling of mixtures will become mandatory by June 1, which is the same day as OSHA's mandatory implementation date. Canada is actively working on instituting GHS but will not be able to complete implementation for industrial products by 2015. Accordingly, they are trying for mandatory implementation by manufacturers by June 1, 2016, and a complete implementation by June 1, 2017 where stock on shelves can no longer ship with older formatted labels. Therefore, between June 1 this year and June 1, 2016, shippers in the U.S. may need to create a separate label for Canadian shipments.

This difference in implementation timelines is an example of why a single product might need two different labels depending upon its final destination. For the time being, industrial and consumer labels in the U.S. and Canada will continue to differ, while by next year, European industrial and consumer labels will follow the same classification and communication scheme.

Oral toxicity is even more complicated, and the scope of this paper does not have the space to show all the conflicting definitions that existed in 2009, but here is the unified definition developed under GHS. There are different GHS tables for dermal toxicity and three for inhalation, one each for gases, vapors, and dusts and mists. All would have to be examined in creating a new label.

Also, the various shapes of symbols and graphics used for hazard communications are unifying into a single shape and graphic that will be used for transport and for workplace notification. This will require a change for all EU labels for mixtures—industrial and consumer—beginning June 1, and will change Canadian industrial labels by June 1, 2016. The new graphic will be mandatory.

Table 1: Some things change while others don’t. Courtesy: Daniel Levine

Labels will now have more information on them, and will have to undergo revisions to include symbols, standard signal words, and standard phrases. Other text, such as contact phone numbers and statements about ingredients with unknown toxicity will also be a requirement. Because of the regional challenges presented by a widening global supply chain, signal words and phrases must translate into multiple languages, making labels more efficient instruments for global hazard communication.

Table 2: And some things are changing. Courtesy: Daniel Levine

Before 2015, as a performance standard, manufacturers could meet the OSHA requirements by methods of their own choosing. Now as a specification standard, manufacturers must follow methods of compliance outlined by OSHA. From 2015 onward, manufacturers will have to examine all available information and make a scientifically based determination where conflicting toxicity information is found. Also, formulators will now have a greater degree of responsibility for determining the correct hazards associated with ingredients supplied by others where the identity of the ingredient is known. Definitions have expanded, especially for physical hazards. OSHA used to talk about flammability, pressure, explosively and reactivity. It is now more finely defined by GHS into these categories:

  • Explosives
  • Flammable gases
  • Oxidizing gases
  • Pressurized gases, such as compressed gases, liquefied gases, refrigerated liquefied gases, dissolved gases
  • Flammable liquids
  • Flammable solids
  • Self-reactive substances
  • Pyrophoric liquids
  • Pyrophoric solids
  • Self-heating substances
  • Water Reactive producing flammable gases
  • Oxidizing liquids
  • Oxidizing solids
  • Organic peroxides
  • Corrosive to metals
  • Explosive dusts

OSHA regulates all these hazards, including some others like "explosive dusts."

Likewise, health hazards have been more finely defined, but the change is not as dramatic as with physical hazards. The increased number of physical hazards is more in line with worldwide definitions already existing for the transport of dangerous goods. The changes to health hazards had to accommodate the various international systems with the guiding principle that no country would reduce the level of protection that previously existed. This will impact Safety Data Sheets and labels.

The older definitions of health hazards include:

  • Irritants
  • Corrosives
  • Toxins
  • Sensitizers
  • Effects on target organs (i.e. liver, kidney, nervous system, blood, lungs, mucous membranes, reproductive system, skin, eyes, etc.)

The newer definitions include:

  • Acute toxicity, oral
  • Acute toxicity, dermal
  • Acute toxicity, inhalation
  • Aspiration hazard
  • Skin corrosion/irritation
  • Eye corrosion/irritation
  • Respiratory sensitization
  • Skin sensitization
  • Germ cell mutagenicity
  • Carcinogenicity
  • Reproductive toxicity, fertility
  • Reproductive toxicity, development
  • Specific target organ toxicity (STOT)
  • Single Dose
  • Repeat Dose

Most of these categories had been regulated previously, but now all categories of these hazards are regulated. It is important to clarify OSHA will not regulate materials of lower toxicity that would be in the home where children are present; this is because The Consumer Product Safety Commission regulates consumer labels, and that organization has yet to propose adoption of the GHS system.

<< First < Previous 1 2 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me