Direct-drive linear motion expands its applications

Direct-drive linear (DDL) motion technology had its start in the machine tool industries: high-quality machining, honing, grinding, punching, and laser cutting. Linear motor systems have expanded into gantries/material handling, flying cut-off equipment, metal forming, assembly shuttles/conveyors, and food-processing machinery and other applications. See photos, supplier table, links to related stories.

12/19/2008



Hegla GmbH & Co. KG (Beverungen, Germany) employs IndraDyn L linear motors from Bosch Rexroth to improve throughput on its Galactic glass-cutting machine. DDL motors provide 140% greater x-y axis acceleration than the prior standard rotary servo motor and rack design.

There is general agreement that direct-drive linear (DDL) motion technology had its start in the machine tool industries—in applications such as high-quality machining, honing, grinding, punching, and laser cutting. Linear motor systems then expanded into gantries/material handling, flying cut-off equipment, metal forming, assembly shuttles/conveyors, and food-processing machinery, according to Bosch Rexroth, Electric Drives and Controls Div.
“Initially, mostly high-end machines contained linear motors but today more and more mainstream and‘economy machines’ take advantage of DDL motor benefits,” says Karl Rapp, industry sector manager, Automation & Machine Tool at Bosch Rexroth .

More direct drive stories

Direct drive linear motion
Mag-Lev controls
Linear motors, controls

A typical example of process improvement due to DDL motion is in orbital grinding of crankshaft pins. Previously, each pin had to be centered and ground individually, but in the new process, the crankshaft rotates around its center, explains Rapp. “The x-axis linear motor follows the pin using its high dynamic and static stiffness and maintains roundness accuracy of below 1


Siemens’ 1FN6 Series brushless synchronous linear motor offers maximum thrust force range of 900-8,080 N (200-1,802 lbf), depending on the model. For greater system economy, multiple primaries (sliders) can run on the same magnet-free secondary track while moving in the same or opposite direction.

At Siemens Energy & Automation , expansion of direct-drive linear motion technology is seen to have reached well beyond machine tool applications. Jeff Gerlach, Siemens E&A consulting business developer, summarizes the newer usage areas as packaging and automated sorting machines, as well as high-speed conveyor systems. DDL motion can be especially cost-effective for conveyors due to much higher speeds developed than with belt- or roller-type arrangements. The company is pursuing these applications with its latest-generation brushless PM synchronous linear motor, the 1FN6 Series (see main article).
Rockwell Automation likewise notes DDL motion systems moving into many of the above applications—along with printing, pick-and-place assembly processes, and electronic packaging. As design and manufacturing innovations continue to drive down cost of direct-drive linear motion systems, they will see still wider application.
Additional direct-drive linear motion system companies
A relatively large number of manufacturing companies supply direct-drive linear (DDL) motion systems, despite significant acquisitions that have occurred in this arena in the last few years. The following table is a non-exhaustive list of DDL motion system suppliers, beyond those covered in the main article.

More direct drive linear motion suppliers

Company

Headquarters

Website URL

Aerotech Inc.

U.S.

www.aerotech.com

Baldor Electric Co.

U.S.

www.baldor.com

Baumuller

Germany

www.baumuller.com

Beckhoff Automation

Germany

www.beckhoffautomation.com

California Linear Devices

U.S.

www.calinear.com

Copley Controls Corp.

U.S.

www.copleycontrols.com

Danaher Motion

U.S.

www.danahermotion.com

Etel SA

Switzerland

www.etelusa.com, www.etel.ch

GE Fanuc Automation

U.S./Japan

www.gefanuc.com

MagneMotion Inc.

www.magnemotion.com

Mitsubishi Electric

Japan

www.mitsubishielectric.com

Oswald Elektromotoren GmbH

Germany

www.oswald.de

THK Co. Ltd.

Japan

www.thk.com

Definition of DDL motion technology, here and in the main article, excludes rotary motors direct coupled to a ball screw.
Linear motor types and terminology
As mentioned in the main article, the permanent magnet (PM) brushless synchronous motor dominates today’s direct-drive linear (DDL) motion systems. However, this linear motor type has several variations and subclasses.
Moving magnet type contains permanent magnets in the primary and coils in the secondary. This allow for simpler design with stationary power cabling and easier integration of the feedback device. Moving coil reverses the linear motor structure. Motor coils are in the primary section and the secondary has the magnet track. It means that more permanent magnets are required (especially for long traverse) and the need for power cables to move with the primary and feedback integration tend to be more complex.
Ironcore refers to adding steel laminations to the magnet track for increased flux to develop higher thrust forces per frame size. Further, single magnet track and dual magnet track variations exist. The latter has the advantages of balancing the high magnetic forces developed between the primary coil and the magnet track.
Ironless refers to a primary containing only copper coils (and epoxy encapsulation). Smooth "cog-free" motion is produced since no attractive force exists between coil and magnet—but at the cost of lower force output.
Slotless refers to a special design of steel laminations where the windings go through holes in the stator rather than slots. The result is a smoother surface facing the magnets. This design also reduces cogging by eliminating variation in attractive force.
Tubular linear motors roll up the flat linear structure about an axis parallel to its length. In one style, an outer thrust block carrying the motor coils envelops and moves along a stationary thrust rod that houses magnets. Another style incorporates magnets in a central rod that moves relative to an outer stator member. Travel is limited since the thrust rod must be supported at both ends—or at one end for the moving-rod version.
Frank J. Bartos , P.E., Consulting Editor
Control Engineering News Desk
Register here .





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.