Energy harvesting materials draw interest in industry

Frost & Sullivan research reports that new technical advances and rising energy prices are driving new research into energy scavenging solutions.

02/05/2010


Although energy harvesting materials wererelatively unknown in the past, their unique properties have driven them into thespotlight recently. Technical advancements in the field have led to large-scaleimprovements, giving rise to high-efficiency energy scavenging solutions. Atthe same time, escalating energy prices have necessitated the development ofcost-effective energy harvesting materials to decrease dependence on energysources.

Materials with the ability to support self-powered

devices were among the first energy harvesting technologies developed, pushing

forward the growth of the piezoelectric (PE) and electromagnetic (EM) energy

harvesting materials market. Other materials now available capture light energy

from sunlight at almost all wavelengths, thereby increasing energy density.

Several manufacturers from across the globe have

deployed energy harvesting products for commercial use; however, large-scale

production of these devices has not been attained. Though research has

identified various energy sources for harvesting energy, only a few techniques

have proven useful forhigh-volume production.

A new analysis from Frost & Sullivan "Energy Harvesting Materials -- The Road Ahead,"

asserts that continuous technical developments will result in fabrication of

new and self sustainable solutions in various market sectors.

"The design of a successful energy harvesting

module depends not only on the material's efficiency but also on the module

architecture, which could be the critical factor defining effectiveness,"

notes Frost & Sullivan analyst Krzysztof Grzybowski. "Developers must

place equal emphasis on material development and smart utilization."

Incentives from governments and non-profit

organizations have encouraged universities and industry participants to develop

newer alternative materials for energy harvesting.

Although the outlook for energy harvesting

materials looks upbeat, there are some challenges that have overshadowed the

landscape. High material prices have remained a spoke in the wheel for the

industry and limited the use of several materials.

Restrictions placed on the use of certain materials

intended for the development of energy harvesting devices due to environmental

concerns has also deterred the use of a good number of potential materials.

Within the piezoelectric (PE) materials, the most popular are the lead

composites such as lead zirconate titanate (PZT).The use of lead in these

energy harvesting materials has raised apprehensions.

Apart from this, the increasing consumption of

cadmium telluride for solar cell applications has diminished telluride

resources, rendering it an unfeasible alternative. This fact has also served to

rein in the growth of thermal energy-based harvesting, considering that bismuth

telluride is the predominantly used material for such applications.

"Recent trends in energy harvesting materials

point to an exponential increase in the commercialization interest in four harvesting

techniques -- PE, thermo-electric, EM, and photovoltaic (PV)," says

Grzybowski. "These techniques pertain to different layers of applications

such as electronics, automotive, medical, and aerospace, where each of these

diverse domains are assumed to be equally critical in defining today's and

tomorrow's energy harvesting."

Access other Control Engineering contentrelated to energy efficiency:

 

- Edited by David Greenfield , editorial director
Control Engineering Sustainable Engineering
News Desk





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.