Engineering in K-12 schools: HVAC systems

Engineers offer practical advice and best practices on how to design HVAC systems and improve indoor air quality in K-12 schools.

03/17/2014


 Keith R. Hammelman, PE, Vice president, CannonDesign, Aurora, Ill.Robert V. Hedman, PE, LEED AP BD+C, Senior associate, Kohler Ronan LLC, Danbury, Conn.Pete Jefferson, PE, LEED AP, HBDP, Principal/vice president, M.E. Group, Overland Park, Kan.Essi Najafi, Principal, Global Engineering Solutions, Rockville, Md.Rodney V. Oathout, PE, CEM, LEED AP, Regional engineering leader/principal, DLR Group, Overland Park, Kan.Sunondo Roy, PE, LEED AP BD+C, Vice president, CCJM Engineers, Chicago, Il.

  • Keith R. Hammelman, PE, Vice president, CannonDesign, Aurora, Ill.
  • Robert V. Hedman, PE, LEED AP BD+C, Senior associate, Kohler Ronan LLC, Danbury, Conn.
  • Pete Jefferson, PE, LEED AP, HBDP, Principal/vice president, M.E. Group, Overland Park, Kan.
  • Essi Najafi, Principal, Global Engineering Solutions, Rockville, Md.
  • Rodney V. Oathout, PE, CEM, LEED AP, Regional engineering leader/principal, DLR Group, Overland Park, Kan.
  • Sunondo Roy, PE, LEED AP BD+C, Vice president, CCJM Engineers, Chicago, Il.

The Kohler Environmental Center at Choate University (Wallingford, Conn.) is an environmentally friendly structure, geared toward teaching school kids environmental stewardship. Courtesy: Kohler Ronan, Anna Wesolowska, photographerCSE: What unique HVAC requirements do K-12 school structures have that you wouldn’t encounter on other structures?

Hammelman: The most unique HVAC requirement of a K-12 school is the variety of uses encountered throughout the building—engineers need to account for an auditorium, performance spaces, offices, classrooms, gymnasiums, cafeteria spaces, kitchens, and possibly even a natatorium. These diverse needs in multiple spaces are not typically found in many other building types.

Roy: Generally, K-12 schools have higher ventilation rates compared to “small-hall” university classrooms since the student population is typically higher. This higher ventilation rate offers the designer greater challenges, but also greater opportunities, to come up with efficient design solutions. Decoupling the ventilation system from the comfort conditioning system can offer a more efficient system, but typically at a higher first cost as there are duplicate systems and more complex controls strategies.

Najafi: The one requirement that stands out is the fact that schools operate for a portion of the year while during the summer months they remain dormant or with minimal use. In a similar way, the daily operation of the school also undergoes drastic changes and sifting of HVAC loads. Classrooms may be fully occupied or not during lunch or gym events, while cafeteria and gym spaces have the reverse occupancy characteristics. This operational uniqueness requires a design that allows for quick sifts of heating/cooling allocation without oversizing the system or the central plant.

Hedman: One area that differs from other building types is the function of rooms such as a gymnasium and the multi-functional uses. A gymnasium can fluctuate in occupancy from 20 to 40 students during a normal school day, to 800 to 1,000 occupants during a game or school event. As an engineer, close attention must be made in designing and selecting the appropriate systems that can satisfy both the cooling and ventilation loads with such a diverse space.

Oathout: One of the biggest differences in HVAC design between K-12 facilities and other building types is the occupant density tends to be much greater and more variable in K-12 facilities. A successful HVAC system design for a K-12 facility must be able to react to these considerations and continue to provide a high-quality indoor environment.

CSE: What changes in fans, variable frequency drives (VFDs), and other related equipment have you experienced?

Najafi: The predominant factor is technological advantage. While the value of VFDs was recognized in the 1990s, their high cost was limiting their use to very specific project applications with a minimum rate of return. Today, the use of low-cost VFDs is automatic, even if they are to be used for balancing purposes only. Similarly, we see the use of multiple direct drive fans in units with high capacity of control, low noise, and minimum maintenance needs. However, the largest change of the last 15 years is the use of direct digital controls (DDC) systems coupled with electronic actuators. They have completely replaced the inadequate and underperforming pneumatic controls of the past.

Oathout: The advancement and reliability of variable air systems have been a great match for HVAC system design in K-12 facilities.

Hedman: Several manufacturers now offer many types and quantities of fans within an air handling system. Fan-wall technology consists of multiple direct-drive plenum fans in an array to deliver air. This type of arrangement allows for a smaller footprint to the overall length of the air handling unit, and redundancy due to the multiple fans and lower maintenance costs as there are no belts requiring changing.

Roy: We have heard over and over again from building engineers that new motors running on VFDs, even when selected properly as invert duty with the proper insulation class, typically do not have the service life of older constant speed motors in constant volume systems. I don’t know if it’s one of those sentimental comments of the “good old days” variety, but considering the number of times I have heard it from very different building engineers, I would suspect there is some truth to the complaint. It would be interesting to see the motor manufacturers provide statistical lifecycle data on constant speed versus inverter duty motors and also for motors installed in the 1960s and 1970s long before the widespread use of VFDs. Is it the VFDs wearing down the motors, or are the motors being built less robustly in this hypercompetitive market?


<< First < Previous 1 2 3 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.