EPRI to study methods to retrofit carbon capture to existing power plants

Electric Power Research Institute (EPRI) project will evaluate practicality of upgrading five coal-fired plants under vastly different conditions.

01/28/2009


Carbon emissions policies, technologies

Two related items from Control Engineering

Palo Alto, CA– The Electric Power Research Institute (EPRI) announced today that five electric utilities in the U.S. and Canada have joined EPRI to host studies of the impacts of retrofitting advanced amine-based post-combustion carbon dioxide (CO 2 ) capture technology to existing coal-fired power plants. In addition to the five host site companies, 15 other companies and organizations, including six from Canada and one from Australia, have joined the project.

The five host companies and sites include Edison Mission Group’s 1,536 MW Powerton Station, operated by Midwest Generation, in Pekin, IL.; Great River Energy’s 1,100 MW Coal Creek Station in Underwood, ND; Nova Scotia Power’s two 160 MW units at its Lingan Generating Station in Lingan, Nova Scotia; Intermountain Power Agency’s 950 MW Intermountain Generation Station in Delta, UT; and the 176-MW circulating fluidized bed boiler Unit 1 at FirstEnergy's Bay Shore Plant in Oregon, OH.

Challenges of post-combustion capture
As global demand for electricity increases and regulators worldwide look at ways to reduce carbon emissions, post-combustion capture (PCC) for both new and existing units could be an important option. However, retrofit of PCC to an existing plant presents significant challenges, including limited space for new plant equipment, limited heat available for process integration, additional cooling water requirements, and potential steam turbine modifications.

“EPRI’s analyses have shown carbon capture and storage will be an essential part of the solution if we are to achieve meaningful CO 2 emissions reductions at a cost that can be accommodated by our economy,” says Bryan Hannegan, vice president of generation and environment at EPRI. “Projects such as this, in which a number of utility companies come forward to offer their facilities and form a collaborative to share the costs of research, are critical to establishing real momentum for the technologies that we will need.”

Each site offers a unique combination of unit sizes and ages, existing and planned emissions controls, fuel types, steam conditions, boilers, turbines, cooling systems, and options for CO 2 storage. The variety of data from the studies will provide the participants with valuable information applicable to their own individual power generating assets.

These five studies will be conducted in 2009 and a report for each site will:

  • Assess the most practical capture efficiency configuration based on site constraints;

  • Determine the space required for the capture technology and the interfaces with existing systems;

  • Estimate performance and costs for the PCC plant; and

  • Assess the features of each plant that materially affect the cost and feasibility of the retrofit.

EPRI’s Coal Fleet for Tomorrow program already is conducting technical and economic assessments of ways to reduce carbon emissions in new, advanced coal-based generation. This new program will apply that knowledge to assess the suitability of retrofitting advanced amine PCC to plants currently in operation and to guide the design of plants under development

“Knowledge gained from the EPRI study will allow us to evaluate the technical and economic feasibility of reducing carbon emissions from existing coal-fired plants that provide nearly half of this country’s electricity,” says Edison Mission Group CEO Ron Litzinger. “The challenge of achieving a low-carbon future requires multiple approaches, from developing more renewable energy, to increasing energy conservation, to developing technology for new coal plants, to maintaining the viability of existing energy facilities.”

Rick Lancaster, Great River Energy vice president of generation adds, “The ultimate purpose of this research is to help our nation meet the growing demand for energy and reduce greenhouse gas emissions. Our interest is in learning how we can capture CO 2 from our existing coal plants, and thus continue to have a fleet of power plants that is productive, cost-effective and fulfills our duty to be good environmental stewards.”

Also read:
- Blog posting: So, how's that carbon reduction going?
- Carbon trading market requires improved infrastructure to curb greenhouse gas emissions

Edited by Peter Welander, process industries editor
Control Engineering News Desk
Register here and .





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me