Evolving control systems

Control systems are in another evolutionary period. Usually this remark is taken to mean a technology leap in the controller. The complete system, however, is more than just the controller, and changes are occurring in every part of the system. As Control Engineering covers these changes during the year, it is useful to look at each product and subsystem in contex.

01/01/2000


Control systems are in another evolutionary period. Usually this remark is taken to mean a technology leap in the controller. The complete system, however, is more than just the controller, and changes are occurring in every part of the system. As Control Engineering covers these changes during the year, it is useful to look at each product and subsystem in contex.

Almost everyone learns basic systems theory today. Briefly, each system has inputs, a decision-making element, outputs, and feedback to close the loop. Control system architecture includes input devices to the controller that serves as the decision-making element, and output devices that make things happen. Feedback is accomplished through the controller to advise operators, technicians, and engineers of abnormal behavior and gather data.


Sensing the environment

Control systems must know the status of the process and its environment. Input devices are the eyes, ears, and touch that the controller needs to determine necessary actions. Typical input devices range from pushbuttons and selector switches, through proximity and photoelectric sensors, to temperature and pressure sensors.

Today's sensors provide more than simple binary (on or off) inputs or varied current or voltage (4-20 mA or 0-10 V dc), although these are still very important. Vision systems providing complex information have become stable and affordable. Bar-code equipment is also part of the information providing system as well as status to the system.

Modern networks enable economical and fast data communication from sensors and other input devices to the controller. Since manufacturing management software now demands more and better information from the lowest level in the plant, these advances help power complete manufacturing enterprise progress.


Controllers and decision making

CE reports and analyzes both types of manufacturing systems-process and discrete. Where it was once believed that these were distinct types of manufacturing never to merge, that border has now been breached. It is becoming increasingly difficult to tell process controllers (DCS) from discrete manufacturing controllers (PLC). To add to the confusion, computer numerical controllers (CNCs) are now blending with PLCs to handle automation as well as machining. Robotic controllers are also now able to handle more automation and data management chores.

The newer system architectures (see diagrams) highlight separating I/O modules from the controller chassis. This means a single cable serves in long wiring runs, rather than bundles of parallel wiring. Wiring from sensors and actuators to the I/O modules is reduced to the shortest possible route. Tracing wires becomes much easier, and common wiring problems are reduced.

To a large part, this is because of market and technology penetration of personal computers (PCs). PCs now are used as controllers, operator interface, communications interface, programming terminal, and data concentrator. As a result, such things as the computer operating system, control software, and other components have become topics of discussion. Few people knew, or cared, what the operating system, chip set, or backplane bus structure was in a PLC or DCS. Now engineers openly debate the merits of Microsoft Windows NT, or embedded operating systems like Windows NT Embedded or CE.

Outputs get things done

Once the controller scans input status ascertaining the environment and makes decisions based on programmed logic, it turns outputs on or off as required. Output devices are usually denoted as coils in programs because the typical response is to energize a coil in a motor starter, relay, or solenoid. Other outputs can be an analog signal to a variable frequency drive controlling a pump or fan or a message sent to a display.

What's in the future? Look for controller functions to move out to I/O modules then to devices. Intelligent devices will form loops of local control networked to a supervisory controller. Communication loss to the controller will not immediately shut down the process or machine unless a safety has been triggered. Networks and software will become more important and embedded control will reside at the device level. The system will be monitored by Web browser technology, often on a wireless pocket computer.


Author Information

Gary A. Mintchell, senior editor, gmintchell@cahners.com




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Motor specification guidelines; Understanding multivariable control; Improving a safety instrumented system; 2017 Engineers' Choice Award Winners
Selecting the best controller from several viewpoints; System integrator advice for the IIoT; TSN and real-time Ethernet; Questions to ask when selecting a VFD; Action items for an aging PLC/DCS
Robot advances in connectivity, collaboration, and programming; Advanced process control; Industrial wireless developments; Multiplatform system integration
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
click me