Feedback, KPIs in the FDA’s total product lifecycle help manufacturing efficiency

U.S. Food and Drug Administration (FDA) is using total product lifecycle (TPLC) to show how feedback and key performance indicators (KPIs) can make manufacturing more efficient.


Knowledge acquired in the development, manufacture, and use of one generation of product can be applied to future generations that a company plans to market. U.S. Food and Drug Administration (FDA) is using total product lifecycle (TPLC) to show how feedback and key performance indicators (KPIs) can make manufacturing more efficient, resulting in

lower-cost medical devices (see TPLC diagrams)


Axendia offers related efficiency resources

Also read from Axendia, FDA-related white papers:
- The Future of the FDA: Operating in an Electronic World ;
- Quality Management System Trends in Life Sciences ; and
- Pursuing a Future Where all Regulated Product Information is Electronic, interview with Dr Armado Oliva, FDA Deputy Director, Bioinformatics .

Providing a feedback loop between shop floor data and the design of the next generation product is indispensible in TPLC. Incorporating strategies such as robust design and designing for manufacturability enable product designers to take into consideration process capabilities. This could have a significant impact in increasing product quality while reducing manufacturing costs.
Build in quality
FDA also has been very proactive is in communicating its support for an industry-wide shift towards a focus on control theory and away from testing to document quality.
The agency defines the “desired state” as follows:

  • Product quality and performance achieved and assured by design of effective and efficient manufacturing processes;

  • Product specifications based on mechanistic understanding of how formulation and process factors impact product performance; and

  • Ability to effect continuous improvement and continuous “real time” assurance of quality.

To meet FDA’s stated “desired state,” manufacturers must attain real-time visibility into their processes to separate the wheat from the chaff. This requires deep knowledge of critical-to-quality variables and KPIs.
To move towards operational excellence, device manufacturers must identify “golden” (optimal) and “lead” (first) units, lots or batches and analyze key parameters that produced them. They must also compare and contrast such batches to identify parameters that are inconsequential to product quality. This approach can provide a deep understanding of the process to enable the development of KPIs to reduce variability, increase yields, and lower costs.
Also see April Control Engineering , "

Lower Cost Medical Devices?

Daniel R. Matlis is president of Axendia, a life-sciences and healthcare consulting and strategic advisory firm.
- Edited by Mark T. Hoske , editor in chief
Control Engineering System Integration eNewsletter
Register here to select your choice of free eNewsletters .

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security