FPGAs - Under the Hood by National Instruments

High-level design tools offer field-programmable gate array (FPGA) technology to engineers and scientists who have little or no digital hardware design expertise. Whether you use graphical programming, C, or VHDL, the synthesis process is quite complex and can leave you wondering how FPGAs really work. What actually happens inside the chip to make programs execute within configurable blocks of silicon? This white paper is intended for the nondigital designer who wants to understand the fundamental parts

05/19/2008


High-level design tools offer field-programmable gate array (FPGA) technology to engineers and scientists who have little or no digital hardware design expertise. Whether you use graphical programming, C, or VHDL, the synthesis process is quite complex and can leave you wondering how FPGAs really work. What actually happens inside the chip to make programs execute within configurable blocks of silicon? This white paper is intended for the nondigital designer who wants to understand the fundamental parts of an FPGA and how it all works “under the hood.” This information is still helpful when using high-level design tools, and can hopefully shed some light on the inner workings of an extraordinary technology. Every FPGA chip is made up of a finite number of predefined resources with programmable interconnects to implement a reconfigurable digital circuit. Figure 1. The Different Parts of an FPGA FPGA chip specifications include the amount of configurable logic blocks, the number of fixed function logic blocks, such as multipliers, and size of memory resources like embedded block RAM. There are many other parts to an FPGA chip, but these are typically the most important when selecting and comparing FPGAs for a particular application.

White Paper: FPGAs - Under the Hood





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Motor specification guidelines; Understanding multivariable control; Improving a safety instrumented system; 2017 Engineers' Choice Award Winners
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
click me