Gigabit Industrial Ethernet: networks and tunneling processes to increase quality, reduce costs

Digital Edition Exclusive: Removing the communication bottleneck improves automated machinery precision by adding extra capacity, collecting more data, and better monitoring diagnostic information.

01/23/2014


CC-Link IE enables the mixing of network topologies for the most efficient use of the network infrastructure. Courtesy: Mitsubishi ElectricIn an era when connected devices, machines, and processes are enabling information transparency, information must be accessible throughout manufacturing environments. Over the past decade, manufacturers have leveraged office-grade network technology and infrastructures in manufacturing. Automated equipment processes information at millisecond—often sub‑millisecond—speeds. Special considerations need to be made to ensure that manufacturing assets have access to the information they require while providing enough bandwidth to support an ever-increasing need for data aggregation for process and production analysis. 

Networks in the manufacturing environment are subject to rugged environments. Truly industrial networks use cables and connectors designed specifically for these applications. And media redundancy and rapid fault recovery are essential in an industrial application to ensure the manufacturing process is safe and operating reliably. Further, industrial networks should be isolated from enterprise network traffic and should have mechanisms that ensure quality of service that prioritizes network traffic. To ensure reliability, now a critical part of manufacturing processes, the network should have less overhead than the typical TCP/IP protocol Ethernet that has been used in the past.

Traditional fieldbus network technology, Ethernet (10 Mb), and even Fast Ethernet (100 Mb) technologies cannot handle the data transmission requirements of most of today’s networked equipment. But starting around the turn of the millennium, Gigabit Ethernet (1000 Mb) began to be used in critical enterprise IT environments, and a Gigabit Industrial Ethernet option was soon also available for use in manufacturing environments. Then in 2007, the CC-Link Partner Association (CLPA) launched CC-Link IE (Industrial Ethernet). 

An open Gigabit Industrial Ethernet network specifically designed for the manufacturing environment, CC-Link IE has grown steadily in popularity because of its unprecedented level of performance and reliability. CC-Link IE, designed to address the most common industrial networking challenges, has become a proven technology that provides the bandwidth needed to handle large amounts of data while ensuring the highest level of reliability and data integrity. 

Most installations do not have the wherewithal to implement a Gigabit Industrial Ethernet entirely across the manufacturing environment. Traditional fieldbus, Ethernet, and even Fast Ethernet networks have already been installed. However, using CC-Link IE Gigabit Industrial Ethernet for transferring large amounts of information between slower network technologies can be an option to improve network performance. This type of communication scheme, called Gigabit Industrial Ethernet Tunneling, can decrease network latency.

A wide selection of Gigabit Industrial Ethernet products, including controllers, network bridging devices, and enterprise connectivity appliances, is available to directly connect to CC-Link IE and integrate legacy network technologies. Courtesy: MitsubisEssentially, Gigabit Industrial Ethernet Tunneling works by connecting two independent slower and/or older TCP/IP Ethernet networks using Gigabit Industrial Ethernet. Two previously independent TCP/IP Ethernet networks (of the same variety) can now communicate with one another via a CC-Link IE Gigabit Industrial Ethernet network backbone. CC-Link IE completely encapsulates the TCP/IP Ethernet message within the data packet of its normal communications, which then allows two or more TCP/IP Ethernet networks to share information. Other devices directly on the CC-Link IE Gigabit Industrial Ethernet network are not affected by these TCP/IP Ethernet encapsulated messages because of the greater bandwidth of the Gigabit Industrial Ethernet network and the quality of service mechanisms that are leveraged.

Bandwidth bottleneck

To meet the informational requirements of today’s production facilities, manufacturers need to take steps to overcome the bandwidth bottleneck that exists in the network architecture among automated machinery. A good way to begin is to:

  • Consider the implementation of a Gigabit Industrial Ethernet backbone. CC-Link IE provides two network media options (fiber or twisted pair copper).
  • Isolate manufacturing and enterprise networks using VLANs to segment the two network environments.
  • Choose a network topology that best serves your application requirements. CC-Link IE allows mixing of network topologies that offer the most flexibility.
  • Identify where bridges need to be installed to encapsulate the TCP/IP Ethernet messages from legacy TCP/IP Ethernet networks onto the Gigabit Industrial Ethernet network.
  • Choose products that natively reside on a Gigabit Industrial Ethernet network as specifications are developed for new machines or as the controls on existing machinery are upgraded. 

Whether trying to improve end-product quality, add extra capacity, collect more data, or monitor diagnostic information, facilities will find following these steps can help ensure that manufacturing assets are communicating optimally. 

- Jeanine Katzel, Control Engineering. Information for this article was provided by Sloan Zupan, senior product manager, Mitsubishi Electric and John Wozniak, networking specialist, CLPA Americas. Edited by Jordan M. Schultz, content manager, CFE Media, Control Engineering, Plant Engineering, and jschultz(at)cfemedia.com.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.