Ground Loops and Their Cures


The National Electrical Code (NEC) defines a ground as 'a conducting connection, whether intentional or accidental, between an electrical circuit or equipment and the earth, or to some conducting body that serves in place of the earth.' A ground loop can be defined as any objectionable current flowing in a circuit's ground or return path. Here is a short guide that will help identify possible sources of ground loops in your electrical systems and how to solve them.

The simplest ground loop involves connection between two different earth grounds as shown in the top figure. With earth ground #1 at one potential, and earth ground #2 at a different potential, a ground loop current will flow in the loop as indicated. While NEC requires grounding electrodes to be connected together and metal parts to be bonded together, there will still be differences in ground potentials in the system. The further apart the connections, the more likely there will be a significant potential difference.

One common cause of ac power ground loops is the double bonding of the neutral. The NEC requires the neutral to be bonded to ground at only one place, either the service entrance or source (for separately derived systems), or at the first disconnect or overcurrent device. Double bonding of the neutral usually occurs in downstream distribution panels. When the neutral is double grounded, returning neutral current will split per Ohm's law and will flow in the ground circuit. This current can cause varying voltage reference to equipment in the system. Remove the illegal neutral to ground bonds and the ground loop will be eliminated.

DC power systems used for instrument and loop power are subject to a number of possible ground loops. This type of dc power system has its return path or negative side grounded in only one place. One common ground loop occurs when a grounded thermocouple is used without isolated inputs or an isolated transducer. Since the grounded thermocouple is typically a long distance from the dc power system's reference ground, a substantial difference in ground potential can exist. Large currents can flow causing varying reference potentials in the system, which can sometimes cause strange effects. The solution to this type of ground loop is to use an ungrounded thermocouple or to isolate the thermocouple ground from the instrument system ground by using an isolator, an isolated transducer, or isolated inputs. Generally, it is good practice to isolate even when using ungrounded thermocouples.

The shield drain wire of an instrument signal cable is another place susceptible to ground loops. A shield wire is normally grounded only at the zero-signal reference point of the circuit, which is normally the dc instrument power system reference point. If any intermediate point on the shield becomes grounded, a ground loop will be formed. Not only will this ground loop corrupt the dc reference, current will flow in the shield which will generate noise in the signal wires. Care must taken to ensure that the field portions of the shields are terminated properly and that they are not exposed to environmental conditions that might cause a sneak path from the shield to ground.

Two systems which communicate digitally to each other and are referenced to ground at two physically different points within the same grounding electrode system are commonly prey to ground loops. This type of ground loop is solved by using isolated communication devices or preferably using a fiber-optic link.

The method to solving ground loop problems is generally twofold. Remove any extra grounds so that there is one ground in the system. If there must be more than one ground, make sure to isolate each from other(s).

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me