High potential energy savings with servo technologies

By connecting servo drives via the DC bus, up to a third of kinetic energy from braking resistors can be saved. If drives can capture energy from motors used for braking applications, up to 80% energy savings can be realized. Also look at power factor.


Save kinetic energy in a process by connecting servo drives to a dc bus, B&R says.If drives can capture energy from motors used for braking applications, up to 80% energy savings can be realized. Other strategies can save additional energy. Because of increased environmental awareness and to take advantage of new business opportunities, more machine and system manufacturers seek energy savings in motion control technologies. If motors and drive components are generally working with a level of efficiency near 100% when operating at the rated load, it makes sense to have a look at the secondary components around the actual drive system. "The sum of many individual measures can turn out to be very significant. When using the right components, large amounts of energy can be saved in the area around the drive system with relatively little effort," said Alois Holzleitner, business manager for Motion Control at B and R.

Optimal drive sizing reduces energy consumption

B and R ensures that drives can be sized in a targeted manner using the Servosoft tool. The masses to be moved and the drives needed to do it can be perfectly matched, which reduces energy consumption to a minimum. For complex machines where movements are executed consecutively, kinetic energy is often released in the braking resistors in the form of heat. By connecting AcoposSmulti servo drives via the dc bus, up to 30% of the energy used for movements can be saved. Brake energy is stored in capacitors and made available at a later time for acceleration. The user profits not only from efficient use of energy, but also from a cooler control cabinet because the heat from the resistors is greatly reduced.

Active energy regeneration saves up to 80%

In cases where braking and acceleration within an axis group do not often take place simultaneously, a further increase in energy efficiency can be achieved through active energy regeneration on the power mains. While all of the brake energy is put to use, unavoidable friction remains as the sole source of loss. With the use of modern Acoposmulti drive systems, it is possible to cost-effectively regenerate up to 80% of the energy previously lost as heat in the resistors. Energy-saving measures are supported by B and R through cold-plate control cabinet installation. This provides the option of using the energy from heat loss that occurs in the servo drives themselves where it is needed via fluid circulation and a heat exchanger.

"A big advantage of cold-plate technology is that a separate cooling device is no longer needed for the control cabinet. This provides savings of up to 23%," said Holzleitner.

Power factor savings

A further energy-saving effect of using the Acoposmulti family of products is correcting the total power factor (TPF) to 1.0. While conventional inverters with a small TPF exhibit considerably higher effective power consumption, which leads to unnecessary loss in the supply lines and transformers, the active power supply of the ACOPOSmulti ensures that the energy is used efficiently. "This saves up to 50% of the infrastructure costs by reducing the size of wires, feed components and fuses," Holzleitner said.




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
System integration: Best practices and technologies to help; Virtualization virtues; Cyber security advice; Motor system efficiency, savings; Product exclusives; Road to Hannover
Collaborative robotics: How to improve safety, return on investment; Industrial Internet of Things, Industrie 4.0: World views; High-performance HMI, Information Integration: OPC and OMG
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors

(copy 5)

click me