High standards for labs, research buildings: Electrical, power systems

Laboratory and research facilities are high-performance buildings, often with complex systems and exacting standards for engineers to meet. Electrical and power demands are unique, and must be carefully designed.

05/23/2014


Bryan Laginess, PE, LEED AP, Senior associate, Peter Basso Associates, Troy, Mich. Jeremy Lebowitz, PE, Vertical market leader, Rolf Jensen & Associates Inc., Framingham, Mass.Brian Rener, PE, LEED AP, Associate, SmithGroupJJR, ChicagoJoshua Yacknowitz, PE, LEED AP, Associate principal, Arup, New York City

  • Bryan Laginess, PE, LEED AP, Senior associate, Peter Basso Associates, Troy, Mich.
  • Jeremy Lebowitz, PE, Vertical market leader, Rolf Jensen & Associates Inc., Framingham, Mass.
  • Brian Rener, PE, LEED AP, Associate, SmithGroupJJR, Chicago
  • Joshua Yacknowitz, PE, LEED AP, Associate principal, Arup, New York City

Engineers at RJA Group are working on the Novartis Institutes for BioMedical Research in Cambridge, Mass. Situated near the Massachusetts Institute of Technology, the project includes two buildings with 550,000 sq ft of laboratory and office space. Courtesy: Rolf Jensen & AssociatesCSE: Describe some recent electrical/power system challenges you encountered when designing a new building or working in an existing building.

Rener: Certain research equipment may require either nontypical voltages such as 400 V or may require special electromagnetic interference (EMI) considerations. This may require the room to be built with shielding in the walls, or special lighting to reduce interference. In addition, we often get requests for “isolated grounding” from researchers, and this requires a careful discussion of what “isolated” means, as all grounding systems must be bonded together at some point.

CSE: How do you balance the need for reliable power with the desire for efficiency and sustainability?

Rener: There has been a greater push for efficient and suitable backup power systems, particularly with UPS and rotary systems. We are seeing efficiencies upwards of 98% to 99% in certain UPS types. The increased use of rotary systems is following the green trend to reduce or eliminate batteries due to their short life span, disposal concerns, and embodied carbon footprint.

CSE: What low- and medium-voltage power challenges have you overcome? 

Rener: In some research facilities using high-performance computing, we are seeing increasing use of 400 V systems. This is great from an energy perspective, but provides some safety challenges to local users and maintenance staff relative to arc flash. Medium-voltage systems also require additional working space by code and for operations of certain types of gear. Space planning with the architect for medium-voltage gear in electrical rooms is critical.

CSE: Describe a recent laboratory/research facility project in which you specified standby or emergency power. What challenges did you face, and how did you overcome them?

Rener: There was a project whereby the standby power systems used both generators and rotary UPSs. There was a concern about coordinating the ramp-up time of the generator and the window of the rotary spin down. This required very careful requirements to be put in the specifications to ensure compatibility between the generator and the rotary UPS manufacturers. In addition, it is important to clearly delineate emergency from standby or optional loads as they have drastically different code requirements.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me