How many tubes for a Coriolis flowmeter?

One is good, two is better, but why four?


Dear Control Engineering: The recent story on large Coriolis flowmeters says the design uses four tubes. I’ve seen two-tube flowmeters, so is using more better? Will six or eight be next? It sounds like those fancy razor blades.

Understanding how Coriolis flowmeter technology works will help explain the concept, but it may not help with your shaving.

Recall if you will that Coriolis technology depends on sending your fluid through a vibrating tube. (Here’s a short tutorial as a refresher.) The mass of the flowing fluid changes the nature of the vibrations which provides data for the flow calculation. Single-tube Coriolis flowmeters have the problem that they are affected by ambient vibrations. The sensor has a hard time telling if it is seeing changes induced by the flow or it’s reading vibrations coming through the floor from that compressor down the aisle.

Adding a second tube helped designers reduce that effect by measuring the difference between the two tubes. This allows the device effectively to cancel ambient vibrations.

The move to four tubes is more complicated, so I put the question to Michael Nuber, who is E+H’s product manager for Coriolis flowmeters in Switzerland. He explains, “There are several advantages of the four tube design over conventional designs. First, it allows for better immunity towards external effects. The two-tube design is already a marked improvement, as one tube always moves in the opposite direction of the other, thus intrinsically stabilizing the measurement system. Each of the tubes is always impacted in the opposite way by external effects like pipeline vibrations.

“Having four tubes adds another dimension. Think of it this way: imagine the two tubes vibrating in one plane, for example along the x-axis. By adding two tubes for a total of four, and using what I call the ‘intelligent mechanical design,’ you also add another plane, the y-axis. That means that the whole measurement system is not only immune to external effects in one plane, but also in another plane that is angled at 90°. The x-y plane then allows for compensating virtually in any direction the external effect might come from.

“Second, having four tubes allows us better use of the circular area. In the same way that a high-performance car engine may have four valves instead of two for each cylinder, it allows us to use smaller measuring tubes. Those allow for reduced wall thicknesses, granting better density accuracy. In addition, the bending stiffness of the smaller tube is lower, either allowing for a higher sensitivity at the same overall length, or the same sensitivity while reducing the length of the sensor.”

Peter Welander,

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security

(copy 5)