How to read P&IDs

Instrumentation detail varies with the degree of design complexity. For example, simplified or conceptual designs, often called process flow diagrams, provide less detail than fully developed piping and instrumentation diagrams (P&IDs). Being able to understand instrumentation symbols appearing on diagrams means understanding ANSI/ISA's S5.

08/01/2000


Instrumentation detail varies with the degree of design complexity. For example, simplified or conceptual designs, often called process flow diagrams, provide less detail than fully developed piping and instrumentation diagrams (P&IDs). Being able to understand instrumentation symbols appearing on diagrams means understanding ANSI/ISA's S5.1-1984 (R 1992) Instrumentation symbols and identification standard. S5.1 that defines how each symbol is constructed using graphical elements, alpha and numeric identification codes, abbreviations, function blocks, and connecting lines.

Deciphering symbols

ISA S5.1 defines four graphical elements-discrete instruments, shared control/display, computer function, and programmable logic controller-and groups them into three location categories (primary location, auxiliary location, and field mounted).

Discrete instruments are indicated by circular elements. Shared control/display elements are circles surrounded by a square. Computer functions are indicted by a hexagon and programmable logic controller (PLC) functions are shown as a triangle inside a square.

Adding a single horizontal bar across any of the four graphical elements indicates the function resides in the primary location category. A double line indicates an auxiliary location, and no line places the device or function in the field. Devices located behind a panel-board in some other inaccessible location are shown with a dashed horizontal line

Letter and number combinations appear inside each graphical element and letter combinations are defined by the ISA standard. Numbers are user assigned and schemes vary with some companies use of sequential numbering, others tie the instrument number to the process line number, and still others adopt unique and sometimes unusual numbering systems.

The first letter defines the measured or initiating variables such as Analysis (A), Flow (F), Temperature (T), etc. with succeeding letters defining readout, passive, or output functions such as Indicator (I), Record (R), Transmit (T), and so forth.


Example shows the story

Referring to the Example P&ID diagram, FT 101 represents a field-mounted flow transmitter connected via electrical signals (dotted line) to flow indicating controller FIC 101 located in a shared control/display device. A square root extraction of the input signal is applied as part of FIC 101's functionality. The output of FIC 101 is an electrical signal to TY 101 located in an inaccessible or behind-the-panel-board location. The output signal from TY 101 is a pneumatic signal (line with double forward slash marks) making TY 101 an I/P (current to pneumatic transducer). TT 101 and TIC 101 are similar to FT 101 and FIC 101 but are measuring, indicating, and controlling temperature. TIC 101's output is connected via an internal software or data link (line with bubbles) to the setpoint (SP) of FIC 101 to form a cascade control strategy.

Often P&ID's include a cover page where common and typical terms, symbols, numbering systems, etc., are defined. On the example, Typical YIC would likely appear on the cover page and the simplified form of YIC would appear throughout the P&IDs.

Typical YIC indicates an on/off valve is controlled by a solenoid valve and is fitted with limit switches to indicate open (ZSH) and closed (ZSL) positions. All inputs and outputs are wired to a PLC that's accessible to the operator (diamond in a square with a solid horizontal line). The letter 'Y' indicates an event, state, or presence. The letter 'I' depicts indication is provided, and the letter 'C' means control takes place in this device.

Adherence to ISA's S5.1 Instrumentation Symbols and Identification standard ensures a consistent, system independent means of communicating instrumentation, control, and automation intent is developed for everyone to understand.

For more information on ISA standards, visit www.isa.org or call 919/549-8411. Visit www.controleng.com for an expanded version of this article.


Author Information

Dave Harrold, senior editor. Comments? dharrold@cahners.com




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.