Increase system energy efficiency with motor and drive tools

Lenze L-Force Drive Solution Designer (DSD) software design tools, L-force MF ac motors, and the energy-saving VFCeco (Voltage Frequency Control economic) feature in Lenze 8400 inverter drives can reduce energy use and pollution, conserve resources, and lower energy costs without sacrificing productivity.

07/30/2012


The Lenze L-Force Drive Solution Designer (DSD) is a powerful set of engineering and configuration tools to help machine engineers set the right course in the design and development phase of motion systems. This new process tool from Lenze helps design engineers select the right drives and motors for optimal machine performance. DSD software enables the exact determination of the process variables and evaluation of the components and their optimum coordination. DSD sizes components based on user-entered machine torque, time, and motion profiles, and generates data specifying where and when and by which means efficient savings can be achieved. The patented Energy Performance Certificate presents the energy consumption of the main drivetrain components calculated by differentiated loss models.

Lenze's Drive Solution Designer and Existing software requires recalculations to compare scenarios. DSD works within a concise and comprehensible graph format clearly showing usage by each component, with a comparative analysis and payback for multiple design scenarios. DSD streamlines the design and sizing process and converts the drive energy savings into kilowatts used, fuel cost, and wasted CO2. DSD provides reliable data by quickly calculating solution variants on the basis of mechanical performance figures. These values are then used to determine the energy costs and CO2 emissions. By comparing solutions, the user can identify the optimum combination of components and the best motion sequence for the drive task. Optimized mechanics and reduced inertias and frictions fundamentally reduce the power requirement to be met by the drive.

Efficient motors

The most widely used class IE1 motors have been phased out and prohibited in some new installations. DSD is a particularly timely tool as machine markets transition to higher efficiency motors. Lenze developed the compact MF series of motors to help design engineers avoid increases in frame sizes and thus complex design adaptations for the migration to Class IE2 ac motors. New to the market, the MF series is designed for open and closed loop controlled operation with frequency inverters. The L-force MF ac motors are developed for a higher nominal speed than conventional 4-pole motors.

Due to its features, the MF motor aligns perfectly with the machine concept. Bridging the gap between conventional servo motors and high-efficiency IE2 Class ac motors, the new L-force MF three-phase ac motors have nominal frequency of 120 Hz with a speed-setting range of 1-24. The MF motor incorporates high ratio gearboxes to achieve higher output speeds of up to 3,500 rpm. With efficiency of 94% to 98%, the right-angle and axial gearboxes ensure almost loss-free energy conversion. Low inertia translates into less energy consumption during speed changes. During rated operation, MF three-phase motors surpass the minimum efficiency of Class IE2 motors but are unaffected by IEC 60034-30. MF can be specified up to two sizes smaller than IE2 motors of equivalent power. Another major plus of the MF motor is its multifunction capability. Applications that may have required multiple conventional motors (of varying frame sizes and power ranges) can now be satisfied with only one MF motor, thereby reducing costly motor inventory.

Lenze L-Force MF ac motors offer an economical solution to close the large performance gap between conventional ac motors and servo motors. Courtesy: Lenze AmericasVariable frequency drive, frequency inverter

Using a frequency inverter to automatically adjust motor voltage produces better efficiency in partial load operations with standard three-phase ac motors. Normally, in partial load operation, three-phase ac motors are still supplied with a greater magnetizing current than actually required by the operating conditions. Additional energy savings can be yielded in combination with high-efficiency gearboxes and inverter drives with energy-saving VFCeco (Voltage Frequency Control economic).

Built in to the Lenze 8400 inverter drives, this energy-saving feature makes it possible to reduce energy consumption by up to 30%. Designed for centralized and decentralized frequency inverters, VFCeco senses load and torque, then adapts to partial loads by automatically reducing the magnetizing current of the motor to the actual requirement. VFCeco can be temporarily disabled for manual control or full load operation.

In the case of load changes (n-settling time < 1sec, for VFC < 0.5sec), VFCeco mode delivers better dynamic performance than other products on the market. In applications with long, extreme partial load phases, a voltage reduction enables the reduction of the average required power. That makes VFCeco particularly practical in applications with great partial load operation, low requirements with regard to the dynamic performance, and infrequent load changes, as commonly found in material handling roller conveyors, conveying belts, pumps, and fans.

Possibilities for increasing energy efficiency can be calculated and compared in DSD yielding a design template for an energy-efficient complete machine.

For more advice and two text tables, see: Adaptive tools, engineering can reduce drive system energy consumption.

- Mariusz Jamroz is senior OEM commercial engineer, Lenze Americas; edited by Mark T. Hoske, content manager CFE Media, Control Engineering, Plant Engineering, and Consulting-Specifying Engineer, mhoske(at)cfemedia.com.

http://www.lenzeamericas.com 



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Big plans for small nuclear reactors: Simpler, safer control designs; Smarter manufacturing; Industrial cloud; Mobile HMI; Controls convergence
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.