Interstitial spaces: Managing the dark zones of the building


Using modeling tools 

Figure 5: A timeline identifies how and when advancements in technology gain prominence within the architecture and engineering industry. The “Market Placement” scale is intended to convey the usage within the market by charting early adoption through staComputer processing, software packages, and cloud-based storage have developed over the past decade to allow new opportunities for architects and engineers to coordinate and manage the dark zones at the design phase of a building project (Figure 5). New digital tools allow the design team to better understand 3-D constraints, to produce a more accurate model, and to track and resolve conflicts with other disciplines as the design is developed. With the appropriate amount of time and fee, new software literally allows for a design team to leave no stone unturned. However, most project schedules must limit the amount of stone turning to what is reasonable and required. 

The latest digital tools can provide a designer with vivid renderings and instantaneous sections to give all model users a better awareness of the unique conditions of the building project. Both the engineer and the architect can use renderings to better understand how systems will fit or co-exist with the architecture and with other systems. The section becomes augmented into three dimensions with the ability to rotate a view to truly understand the constraints and conflicts for any specific location. This has changed the way designers and BIM technician draw solutions from the start. For documentation purposes, it is quite easy in most current software to draw planes to generate working sections and cut-lines along a model as it develops. 

Figure 6: “Smart objects” or product families are prominent tools in modern design software packages. Intelligent components have characteristics that identify installation clearance, scheduling, and coordination characteristics. Courtesy: ArupAdvancements in software have allowed for the inclusion of “smart” components that have embedded installation clearances, inlet/outlet dimensions, and handedness (Figure 6). With the inclusion of actual components and fittings, the likelihood of conflict will be reduced. The long-winded annotation that described how to connect a system together within a 2-D plan has now been replaced by a coordinated 3-D model that shows the same information more clearly to other stakeholders. An added benefit is that this model can now be viewed in the field using a tablet. Intelligent building components improve the accuracy of the design model, and allow for more accurate equipment schedules and quantity takeoffs. Smart components allow disciplines to extract data for load calculations and also to have embedded characteristics to facilitate other disciplines to complete their own calculations. The use of smart components is one progression as the design industry transitions from 3-D coordination to more comprehensive BIM. 

On a recent 500,000-sq-ft health care project, Autodesk Revit MEP was used at early stages to improve the accuracy of the mechanical load calculation model and reduce the data entry required. The software enabled the team to export floor areas, room names, and other characteristics into a format that could be read by the load calculating software. 

As the design progressed to construction documents, a strategy was developed with the architect to assure that changes to room names and dimensions would enable the team to easily update the load calculation software with limited rework. Dynamic sections were used by the team throughout the drawing production to determine bottlenecks and coordinate with the other trades. Finally, the use of smart components allowed for the development of air balance tables and schedules. For a project of this size and type, these systems were found to significantly improve the accuracy of the calculations and schedules and to reduce time required for manual efforts. 

For example, on a large museum project, scripts that interrogated the model were used to establish sheet metal quantity and pipe lengths in order to expedite the work of the cost estimator. This not only allowed for a more accurate understanding of the amount of ductwork and pipework, it also gave the engineering team an accurate understanding of insulation, jacketing, and hanger costs. On a courthouse project, partial models were submitted with requests for information (RFIs) in order to help visualize actual conditions in the field and to facilitate more accurate solutions. On multiple projects, the shop drawing review process also has been made much easier by using overlay tools to compare contractor shop drawings to the original design documents. And finally, on a recent college project, the Arup team used equipment room renderings to convey equipment room access to the school’s facility personnel.

One additional advancement is the use of remote file servers and cloud-based storage that allow teams to download other discipline models and track progress in real time. If all team members are working in the same platform, conflicts can truly be resolved as the design evolves. Third-party software with clash detection can also be used to compare multi-trade models (even those developed with different software) and identify interference. Now, more than ever, software tools allow designers to be proactive in coordinating with other trades as they work while ensuring that nothing is missed through clash detection and diagnostics.

The risks

With so much power in the hands of a modern design team, there is an argument that mistakes may never again be made. Clearly, that is not true. Just like the adoption of the typewriter, computer-aided design (CAD), and word processing, there are changes to the entire design process that require attention of all project team members. Tried-and-true methods must still be implemented. For instance, the use of BIM does not replace the need for strong planning and communication among the design team. In fact, because there is often an exchange of progress models, there can often be a need to increase the level of communication. 

It should also be acknowledged that 3-D design and BIM frequently can be more time consuming than 2-D drawing production, especially at early stages. 3-D and BIM design can take additional time to coordinate fittings and review sections in 3-D. Because of this, it is essential to match the level of development of the model with that of the other trades to minimize rework. To revisit the previous point of “garbage in = garbage out,” in the integrated model, if any one component is poorly conceived, it can impact all other services. While cloud-based storage does allow for access to the latest information, it does not necessarily guarantee that all information has been fully considered. Good designers know that the design process can be iterative. Thus, it is important to ensure that the designers try to increase the level of development of their own model in step with those of the other disciplines. 

In traditional procurement methods, changes to the mechanical or plumbing system often may not have been appropriately conveyed to the electrical engineer in the haste of a project deadline. The risk of neglecting to communicate key coordination items is always greater when time is short or project teams are large.  On more recent projects, we have experienced expedited schedules and integrated project delivery (IPD) procurement. In these cases, the contractor detailed coordination can overlap the design schedule. Thus, engineers must not only determine when to begin detailed coordination within the design trades, but they also must ensure that design iterations do not impact completed coordination by the contractor trades. Even with cloud-enabled project access, judgment and communication are essential factors that contribute to a successful process. Particularly at early stages, team members must coordinate allowances based on their judgment of where the model will end up as opposed to the exact dimensions at which it currently stands. 

Figure 7: This superimposes the Macleamy curve (describing the tendency of a project to change at earlier stages) with the Level of Development (that describes the amount of detail which is incorporated into the model). The intent is to demonstrate that aOne way to balance engineering allowances with design model integration in a way that other trades can follow is to develop a BIM execution plan that defines the level of development (LOD) at each stage of the model. The level of development may be defined uniquely within the execution plan or refer to specific language on LOD as defined by the American Institute of Architects within the E202 BIM Protocol document (see Figure 7). With the latter, LOD 100 through LOD 500 is defined to give other model users an understanding of the precision of the existing model in terms of scheduling, pricing, fabrication, and construction.

The LOD of the model should also inform the confidence that a team may have in optimizing floor-to-floor and equipment room sizes. As identified in Figure 8, some of the components that would be incorporated in the final installation would not be identified within the design model. For instance, duct/pipe accessories and anchorage are often described in equipment schedules, specifications, or typical details as opposed to in the plans. In seismic zones, there can be even greater challenges in incorporating diagonal bracing for seismic support. Even at later stages, contractor shop drawings may not consider all clearances required for phasing, installation, or future maintenance. Because of this, good judgment must still be used when evaluating the benefits of reduction in floor heights or in reducing spatial allowances of equipment rooms.

Working as a team

Figure 8: The comparison model between the design engineer and the contractor conveys that judgment must still be used at design stages to assure that systems will fit as planned. The reason is that specialties, clearances, access, and other characteristiIt is essential that design teams and BIM operators have a strong awareness of how much information is needed and how extensively tools are to be used at early stages of a project. In general, many of the tools require additional setup. For instance, additional effort may be needed to define a family of parts for a particular smart component or to establish a process to export information into another type of software. The team must determine which processes will be used and how information must be transferred between your firm and outside entities. 

Because there must be much more cohesion between all models, the design team must invest early, not just in establishing initial setup of the files, but also in establishing a process for importing and merging future, more detailed data. It is recommended that a BIM execution plan be used to document the process for file transfer, the level of detail that will be identified in the model, and the area of responsibility for each entity. BIM managers must also be named to take ownership of each firm’s model, to monitor file sizes, and to assure that automated processes continue to function. 

The authors have experienced substantial benefits in the use of BIM through the automation of manual processes and the accuracy of the model. Further, BIM allows the development and visualization of alternate solutions, which then can be communicated to our clients. Spatial access in ceiling voids and mechanical rooms can now be communicated quite easily by directly exporting a screen shot from the maintenance personnel’s point of view. Scripts can be used to determine actual quantities of components to facilitate more efficient and accurate costing. At later stages of a project, as the models become more stable, we see substantial benefits in reviewing contractor shop drawings and eliminating or reducing RFIs from the field. 

At this point, we have not found research to identify whether the time cost of production is in fact offset by the more efficient construction administration process that is enabled by BIM. The value of the process is heavily dependent on management of change during construction. While the software does present new challenges and require new and more defined roles, it is essential to our profession to assure that efficiency is maximized. We continue to use pilot projects to advance the automation and integration processes available. We also have experienced the benefit of using external consultants to assure the project models are correctly set up and that the most efficient functions within the BIM tools are being fully used. 

BIM is here to stay, and our profession must continue to explore software capabilities to fully use and optimize all of the benefits and to advocate with software providers to develop tools to fit our industry needs.

Erin McConahey is a principal in mechanical engineering at Arup's Los Angeles office. During her 18 years with Arup, she has worked internationally and now leads multidisciplinary design teams on a wide variety of project types. She served on the editorial board of Consulting-Specifying Engineer for 6 years and was a 2008 40 Under 40 award winner. Jamey Lyzun has more than 12 years of experience on projects throughout North America, Asia, and the Middle East. In a range of projects types and sizes, Lyzun has applied many of the techniques outlined to assure that integrated strategies at the design phase can lead to trade coordination at construction phase. Lyzun is a 2013 40 Under 40 award winner.

<< First < Previous 1 2 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
System integration: Best practices and technologies to help; Virtualization virtues; Cyber security advice; Motor system efficiency, savings; Product exclusives; Road to Hannover
Collaborative robotics: How to improve safety, return on investment; Industrial Internet of Things, Industrie 4.0: World views; High-performance HMI, Information Integration: OPC and OMG
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
click me