K-rated or harmonic mitigating transformers

Just as current harmonics can cause additional heating and losses in the magnetic core of a motor, they can produce much the same effect in the iron core of a transformer. However, greater losses from harmonics can occur in the windings of the transformer.

09/17/2012


Eddy currents are circulating current in the conductors induced by the sweeping action of leakage magnetic field on the conductors. Eddy current concentrations are higher at the ends of transformer windings due to the crowding effect of the leakage magnetic fields at the coil extremities. Eddy current losses increase with the square of the frequency of the harmonic content of the current. Transformers that supply power to nonlinear loads generate more internal heat than if the same load was strictly linear in type, meaning that the transformers aren’t capable of meeting their nameplate capacities without running at damaging high temperatures. 

By the early 1980s, commercial buildings had a significantly high percentage of nonlinear loads in proportion to total load; as a result, overheating was regularly seen on heavily loaded transformers. Electrical manufacturers responded with transformers specially designed to handle harmonic-rich loads, called k-rated transformers. 

For this reason, where transformers will be serving nonlinear loads comprising more than 35% to 50% of their nameplate rating, k-rated transformers ensure the transformer does not overheat and possibly fail. 

The k-rating of a transformer is defined as highest k-factor load that the transformer can serve at its nameplate rating. In effect, the higher the k-factor, the more resulting heat the transformer is able to handle without exceeding its load carrying rating. In practical terms, the most common k-rated transformers typically have a k rating of 4, 7, 13, or 20, which corresponds to harmonic producing equipment totaling up to 35%, 50%, 75%, and 100% of downstream load, respectively. 

A key weakness of k-rated transformers is that while they reduce losses within the transformer itself, they do not actually reduce harmonics within the power system. Thus all loads connected to the secondary side of the transformer see the same voltage harmonics, and the upstream building electrical system is exposed to the current harmonics drawn by the transformer. 

Harmonic mitigating transformers (HMTs) are designed to greatly reduce certain harmonics based on their design, and thus reduce exposure to the rest of the electrical system from current harmonics drawn by downstream loads such as VFDs.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.