Kinetic mesh: Wireless networks groomed in the most rugged environments

Traditional ways of network routing work just fine in a stable environment. But in rugged, dynamic environments, kinetic mesh is increasingly effective where infrastructure devices are constantly on the move. Also see an explanation of how kinetic mesh can be used in oil and gas applications.


This graphic shows how kinetic mesh network works in the oil and gas industry. Courtesy: Rajant Corp.Industrial mobility, wirelessly connected mobile devices, is changing the world as we know it for manufacturing and process facilities, including highly distributed oil and gas operations. Kinetic mesh networks increase reliability and decrease the cost of gathering information.

Mobility has been a part of humanity's desires across cultures for millennia. The ability to chart one's own destiny—unencumbered—is part of the canon of great ideas upon which democracy and freedom were established in the Western world.

Today, a new type of mobility has emerged with reckless abandon. It's the type of mobility that-again—is changing the world as we know it.

  • Nine-billion mobile connections by 2020 will greatly increase mobile broadband traffic.
  • Cisco predicts 15.9 terabytes of mobile data traffic will traverse networks by 2016—a 10x increase over 2014.
  • Gartner says with the move toward computing everywhere, more and more sensors will generate even more data, creating new challenges for IT.

With all that broadband traffic, the private wireless network, at least for business, has emerged as a key infrastructure for accommodating this seemingly unquenchable thirst for bandwidth.

The wireless world is extremely dynamic. And lots of things can interfere with wireless communication, such as trucks driving by, people moving, and so on Traditionally, the way wireless networks function has resulted in varying degrees of performance. 

Kinetic mesh networks origins

Kinetic mesh networks, a type of wireless network, creates large-scale local wireless networks capable of multiple concurrent connections with a lot of redundancy. But there's a new type of wireless mesh network—kinetic mesh—that has been achieving momentum and has demonstrated greater adaptability to network changes on-the-fly versus other types of networking.

The technology is not new; it's been used in some of the most rugged environments to date, specifically in military and mining applications. It can handle movements onto the network or off the network, as well as interference crossing multiple channels, much more adeptly than other networking technologies. It helps keep a network running reliably despite all the variables that wireless networks generally confront.

Wireless mesh networks, under which kinetic mesh is classified, are expected to attain growth of $177.2 million in 2017, an almost 16% compound annual growth rate, according to IHS (formerly IMS Research).

These kinetic mesh networks differ from traditional mesh in that they are extremely scalable, fully mobile-enabled, wide-ranging, and provide reliable connectivity, allowing all nodes and clients to be in motion all the time. When needed, the network instantaneously redirects data packets over more available frequencies to avoid interference or obstructions while assuring the fastest possible delivery.

Kinetic mesh enables full network motion and flexibility, with no static controller nodes to cause failure. Instead, it employs multiple frequencies and any-node to any-node capabilities to continuously and instantaneously route data via the best available traffic path and frequency, all with extremely low overhead.

Kinetic mesh technology emerged as a result of 9/11 and the tragic results that ensued, including the failure of the communications infrastructure. Kinetic mesh enables people and organizations to deploy networks into places where communications infrastructure has been destroyed or damaged, or to quickly move networks into places where they never existed. In other words, real-time mobility across the network is achieved.

Since 9/11, kinetic mesh networks have been called upon to support efforts following crippling events.

  • In 2004, they were used in Thailand after the tsunami that devastated that and other nations. A kinetic mesh network was deployed in relief efforts in Phuket and for digital body identification.
  • In 2005, Hurricane Katrina devastated New Orleans and the region; a kinetic mesh network supported relief efforts in Mississippi.
  • In disaster scenarios, as well as in other types of rugged environments, such as manufacturing, any communications infrastructure needs to deliver throughput and scalability.

Routing, administrative applications

Traditional ways of network routing work just fine in a stable environment. But in rugged, dynamic environments, kinetic mesh is increasingly effective where infrastructure devices are constantly on the move.

That's because a kinetic mesh's wireless router has extra processing power and solid-state memory, which allow it to do edge-processing. This edge-processing can store video and other data, "groom" the data, and enable the data to be consumed directly from the router.

The ability of a kinetic mesh platform to handle changes and process things at the edge gives people access to applications much more quickly.

For example, municipal buses capture video on routes daily. At the end of a shift, the drivers hand-deliver video hard drives to their bus depot colleagues. With kinetic mesh's capabilities, the enormous video files can be uploaded wirelessly without human intervention. The application is automated through edge-processing.

This type of edge-processing also can be used to help bus drivers and railroad engineers in other ways. Nodes embedded into sensors at rail crossings and other places can relay data, including videos, to officials several miles from potential hazards, reducing risks of accidents.

In mesh networks, the administrative overhead and traffic to keep the infrastructure up and running grows on a curve as new nodes are added. As devices join the network, the administration necessary to keep things running consumes available bandwidth. Apps stop working because the overhead is gorging itself on the bandwidth.

The prime issue of mobility also needs to be addressed. In the broadband world, mobility is an expression of the ability to change. Nodes come into range and join the network; other nodes fall out of range and depart the network. Change is a constant in these types of networks.

Think of it this way: It's unlikely that an organization would allow its computer enclosure to be opened for just anyone to put things in or take things out. A lot of planning goes into the computers and technology that make their way into that closet.

With kinetic mesh networking, nodes—essentially wireless computers—automatically enter and depart a virtual moving computer enclosure. In essence, that computer closet lives in a world outside of one location and becomes a living, distributed network. Think about those nodes on trucks, on people, on aircraft.

Kinetic mesh networks have simplified and automated the ability of those vehicles now connected by those nodes to join the network within milliseconds.

In traditional infrastructures, adding a PC to the network means telling the rest of the network that a new device with an IP address is entering. It may take a few minutes or a half hour to make the necessary changes and to inform all other computers on the network that a "new guy" has arrived, or left. 

Mesh for oil and gas

The oil and gas industry is ripe for kinetic mesh networks as a result of the increasing operational and regulatory pressures they face. Companies in this market space are being exposed to more regulation at the state, federal, and international levels. As regulatory requirements increase, it becomes imperative to gather more information about the performance of pumps and valves, to have the knowledge of whether something is leaking into the ground or into the atmosphere, for example.

Such scenarios drive the need for different types of real-time data analytics coupled with sensor technology, which can deliver voice, data, and video for better security and equipment maintenance. In turn, networks have access to sensor information in such a way that it keeps companies apprised of what's going on and gives them time to react to what may transpire, be it turning off a valve, opening a valve, speeding up a pump, or reducing pressure. All those actions become possible as a result of sensor information tied to a kinetic mesh network.

Across industries, businesses want to become more efficient in their operations; they want the latest data to make the most informed decisions. However, they must weigh the cost of collecting such information versus the benefit of having it for making decisions.

Robert Schena is CEO and founder of Rajant Corporation. Courtesy: Rajant Corp.Kinetic mesh networks are driving down the cost of gathering that information. As such networks are installed, the cost of the next unit of information is declining; therefore, it becomes worthwhile to gather such information toward making better operational decisions.

If connections fail or don't take place as scheduled, motors and pumps get damaged, trains go barreling through intersections, planes overshoot runways. Bad things can happen when network devices and people connect incorrectly or fail to connect.

Ubiquitous connectivity is growing in importance for business. The dependency on the communications infrastructure will grow exponentially and means a renewed focus on reliability and security.

- Robert Schena is CEO and founder of Rajant Corp., a private wireless network provider. Edited by Joy Chang, Control Engineering,

Key concepts:

  • With all that broadband traffic, the private wireless network has emerged as a key infrastructure for accommodating this seemingly unquenchable thirst for bandwidth.
  • Wireless mesh networks, under which kinetic mesh is classified, are expected to attain growth of $177.2 million in 2017, an almost 16% compound annual growth rate, according to IHS.
  • Kinetic mesh enables full network motion and flexibility, with no static controller nodes to cause failure.

Consider this 

Is your industrial networking system wireless in nature or does it still rely on traditional infrastructures?


Read more Control Engineering wireless technology stories online.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Make Big Data and Industrial Internet of Things work for you, 2017 Engineers' Choice Finalists, Avoid control design pitfalls, Managing IIoT processes
Engineering Leaders Under 40; System integration improving packaging operation; Process sensing; PID velocity; Cybersecurity and functional safety
Mobile HMI; PID tuning tips; Mechatronics; Intelligent project management; Cybersecurity in Russia; Engineering education; Road to IANA
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
click me