Machine guarding and economic value: Wired safety versus safety automation

Over the past 10 years machine safety has experienced probably the greatest transformation since the advent of machine control technology. In my opinion, the recent adoption of “safety automation” has outpaced the original adoption of PLC technology in the early 1970’s. It was in the early 1970’s that machine safety was mandated by industry standards to be “hard wired.” At this time, PLC technology had just been introduced, and its reliability paled in contrast to the robust PLC reliability of today. See graph illustrated below.

10/31/2011


Machine safety has experience probably the greatest transformation over the past 10 years since the advent of machine control technology. In my opinion, the recent adoption of “safety automation” has outpaced the original adoption of PLC technology in the early 1970s. It was in the early 1970s that machine safety was mandated by industry standards to be “hard wired.” At this time PLC technology had just been introduced and its reliability paled in contrast to the robust PLC reliability of today. Just take a quick glance at the conceptual graph illustrated below.

Graph explaining the growth of general automation versus machine safety technology along with downtime. Courtesy: J.B. Titus 

I experienced the introduction of automation technology lead by PLCs as a young engineer in an automotive plant. After a slow start, automation technology took off like a rocket experiencing wide spread adoption and application to machine control. The advantages of diagnostics reduced wiring, increased machine up-time, reduced panel space, easier trouble shooting, etc. drove acceptance as research and development drove technological improvements and inherent reliability. At the same time, however, machine safety was required to be hard wired and could not enjoy these advantages or technological improvements.

JB Titus, CFSEIn my opinion, this created a safety layer in the machine control architecture interfacing the safety related electromechanical components to the machine control automation technology. The unintended consequences resulted in a rather stagnant level of technology innovation for the safety layer in comparison to the automation technology. This gap of technology helped drive a new metric called “unplanned downtime.” Plant operation personnel became used to the diagnostics and other advantages of the automation technology and conversely became frustrated by the lack of diagnostics, intermittent downtimes, and other disadvantages of the safety layer. Thusly, many of us experienced occasions where “quick fixes” were made to get machines back into production to meet schedule demands.

To make a long story short, folks in my era have experienced the changing landscape of machine control to once again see the unified machine control architecture of “integrated automation with safety” in innovative technology. Machine safety can once again be designed in vs an after-thought. Of course, direct wiring of safety components is still a viable option. However, for larger more complicated machines integrated safety is now available. Most importantly the economic values of increased productivity can drive increased profits which in turn can provide a competitive advantage.

What experiences have you had along this changing landscape evolution?

Your comments or suggestion are always welcome so please let us know your thoughts. Submit your ideas, experiences, and challenges on this subject in the comments section below. Click on the following text if you don't see a comments box, then scroll down: Machine Guarding & Economic Value – wired safety vs safety automation

Did you see the Safety Integration Webcast?

Related articles:

Cost Savings Opportunities in Machine Safety

Machine Safety Pays

Risk assessment - A best practice for sustainable performance

Machine safety pays off

Contact: www.jbtitus.com for “Solutions for Machine Safety”.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.

(copy 5)

click me