Machine safety: Are most machines are intrinsically safe by design?

It is odd to think that anyone in the U.S. believes most machines are intrinsically safe by design. Yet, only three weeks ago I heard this comment spoken in a conference room. Honestly, this kind of statement needs a lot of scrutiny to understand the intended validity.

04/21/2013


Can anyone in the U.S. believes most machines are intrinsically safe by design? Just three weeks ago I heard this comment spoken in a conference room. Honestly, this kind of statement needs a lot of scrutiny to understand the intended validity.

 

It’s important to lift the covers, look around, ask some questions, and make some assessments. For example, this room was filled with representatives of machinery manufacturers from around the world. As such, it’s also important to have some understanding of the global country/regional regulatory and enforcement environments. Case in point – the above individual was an engineer from the United Kingdom. Knowing this if he were talking about machines built and installed in the UK he would be mostly correct. So, why is this statement country specific? Since we have international standards co-written by all countries aren’t we all treated the same?

 

NO! And the reason is that we all have country/region specific enforcement requirements and methodologies, interpretations, legal systems, resources and capabilities. I believe the broadest way to explain this dilemma is to focus on the enforcement side. In the case above the OEM is located in the UK and is therefore subject to the Machinery Directive. The Machinery Directive encompasses all of the countries that form the European Union and is considered the “law” for enforcement purposes. As international standards (like ISO 13849-1: 2006) become adopted and listed under the Machinery Directive, then conformance to that standard is considered as a legal requirement. Furthermore, since adopted and listed standards in the EU are written with a focus on designers and builders of machinery they are in fact requiring compliance by OEMs. Therefore, the statement above by the engineer in the UK could be judged mostly correct because it would be understood that an OEM in the UK would not be allowed to manufacture a machine without being compliant to machine safety standards listed by the Machinery Directive.

 

Conversely, if the engineer making that statement worked for an OEM located in the US and the ultimate customer is also located in the US then his statement could not be assumed to be mostly correct. Enforcement in the US is the responsibility of OSHA and OSHA places compliance to standards on end users of machinery. At the same time OSHA enforces “a safe working environment” on both end users and OEM’s but in doing so they do not inspect a machine under construction by an OEM. In both cases the OEM in the UK and the OEM in the US could well use ISO 13849-1 for safety compliance during the design and build of the machine. However, for enforcement purposes the OEM in the US may or may not have built his machine in compliance to ISO 13849-1 because he is not required under enforcement to have built a safe machine. OEM’s in the US will “likely” build a safe machine because; they follow best practices, customer specifications, competition, or possibilities of costly legal proceedings.

 

In my opinion in the US one cannot assume that machines are intrinsically safe by design.       

 

In summary, I advise that it’s generally important to have some understanding of the global country/regional regulatory and enforcement environments to understand the level of machine safety by design.

 

Has this presented you with any new perspectives? Add your comments or thoughts to the discussion by submitting your ideas, experiences, and challenges in the comments section below. 

 

J.B. Titus, CFSERelated articles:

Inside Machines: Does adopting ISO 13849-1:2006 change the U.S. model for compliance and enforcement?

 

Contact: http://www.jbtitus.com for “Solutions for Machine Safety”.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.