Machine safety compliance: start with design

From ergonomics and e-stops to OSHA and output, here are the essential considerations for machine safety compliance. Safety starts with design.

09/11/2013


E-stops (emergency stop buttons) need to be designed to be easily accessible and labeled clearly to allow for a quick shutdown in an out-of-control situation. Courtesy: OptimationAn important first step when considering safety as part of machine design is understanding the scope of what the machine is being designed to deliver. Safety in design is critical to the end products as well as to the machine’s profitability, whether the equipment is designed to deliver compressed air; cuts or forms metal parts; assembles parts; or makes widgets. Safety in design includes an understanding of the machine throughput information (how many parts per hour). Evaluate the complexity or simplicity of the machine’s loading and unloading process (manual or automatic), and in-feed and out-feed requirements (how do raw materials get into the machine and finished parts get out of the machine) during the design phase.

Floor space requirements can best be determined during the design stage as well. Consider the machine footprint, such as how much space is needed for the machine, the operator, material handling machine access (such as forklift, conveyors, etc.), production component marshalling, material storage, access for removing end product components, and packaging materials; and how waste will be handled. What services will be needed to power and operate the machine, such as air, electricity, water, vacuum, etc.? Consider what is needed as well as the source for these services.

Keep ergonomics in mind: machines should be able to be operated by any person. Design adjustable controls to make the machine efficient and user friendly. Courtesy: OptimationInclude ergonomics during the design phase. Adjustable equipment should be able to be operated by any person. Adjustability must be designed into the operator’s panel and input stations allowing for risk-free, user friendly, and efficient operation of the equipment.

One guide for the ergonomics engineering solutions is the book, “Kodak’s Ergonomic Design for People at Work.” There are currently no OSHA or European ISO 18001 standards for ergonomic design, but that doesn’t mean citations cannot be issued by OSHA in the U.S. OSHA will issue citations to companies for poor design via its General Duty Clause, which states the employer must provide a workplace free from recognized hazards. Industrial illnesses caused by repetitive motion, such as carpal tunnel syndrome, are considered recognized hazards by OSHA.

Along with ergonomics, the Americans with Disabilities Act (ADA) must be considered during design. The U.S. Department of Justice’s revised regulations for Titles II and III of the ADA Act of 1990 were published in the Federal Register on Sept. 15, 2010. The Department has assembled an official online version of the 2010 ADA Standards for Accessible Design (2010 Standards) to compile the information in one easy-to-access location. It provides the scoping and technical requirements for new construction and alterations resulting from the adoption of revised 2010 Standards in the final rules for Title II (28 CFR part 35) and Title III (28 CFR part 36).

The Justice department has also compiled guidance on the 2010 standards from the revised regulations for Titles II and III. This explanatory information from the regulations addresses the scoping and technical provisions of the 2010 standards. The new requirements can be found at ADA.gov or within the U.S. Department of Justice Civil Rights Division.

Regulatory considerations

Recognize what it will take for a mechanic to perform service maintenance and repair on your machine. Poor accessibility can lead to extended downtime and potential injuries. Courtesy: OptimationBeyond safe machine design, a health, safety and environmental (HSE) plan is needed. Front-end loading, a thorough planning proactive approach to machine design, can help bring to mind everything that needs to be considered. The HSE plan, if thorough, will raise a high percentage of the safety concerns so these issues can be resolved in the earliest phases. Use the HSE plan to facilitate the construction of the operating facility and help answer questions raised during this phase of engineering as well. HSE plans are not required by OSHA’s 29 CFR 1910 General Industry, 29 CFR 1926 for Construction, nor by ISO 180001. They only require that all hazards be recognized and addressed prior to starting construction and starting equipment.

OSHA provides the requirements for exit routes, emergency action plans (emergency access, egress, exits, and emergency response signage, etc.) and fire prevention plans in Subpart E of 29 CFR 1910.33 through 1910.39. Since safety standards differ by country, designers should consider the country in which the machine will be located and operated. If the machine has running or moving parts that would require guarding, related regulations are spelled out in 29 CFR 1910.211 through 29 CFR 1910.219 Subpart O. All operating hazards must be identified during design so that interlocking guards can be included to protect those who will operate the machine and require access for maintenance activities. Electronic stops (e-stops) also need to be designed and labeled so equipment can be immediately shut down if an out-of-control situation were to occur. OSHA provides direction for lockout/tagout (LOTO) and hazardous energy control in 29 CFR 1910.147 Subpart J.  OSHA requires that new equipment be designed such that personal protective equipment (PPE) would not be required for machine operators to be safe in Subpart I, 29 CFR 1910.132. The standard directs that new equipment shall design out any hazards that could be serious enough to require PPE if at all feasible. It should be noted that feasibility is not necessarily a cost or a convenience issue. Safety standards related to electrical safety are found in Subpart S at 29 CFR 1910.301 through 399.

These standards are examples of OSHA performance standards, which describe what needs to be done to achieve compliance. ISO 18001 provide overarching high-level guidance and does not provide direction on how to perform these types of work.

OSHA isn’t the only standard enforced. Other standard writing organizations documents are referred to and/or incorporated into OSHA regulations. Many of the American National Standards Institute (ANSI) standards, as well as those from the National Fire Protection Association (NFPA), are incorporated by reference into the OSHA standards, which make them enforceable by OSHA. These are only two of many incorporated standards that must be considered during the design phase for machine compliance.


<< First < Previous 1 2 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.