Mark Jefferson Science Complex

Renovation, addition; Mark Jefferson Science Complex; Peter Basso Associates

08/15/2013


This image shows the exterior façade of the Mark Jefferson Science Complex. Courtesy: Curt Clayton PhotographyEngineering firm: Peter Basso Associates
2013 MEP Giants rank:
78
Project:
Mark Jefferson Science Complex
Address:
Ypsilanti, Mich., United States
Building type:
School (college, university)
Project type:
Other
Engineering services:
Automation & Controls, Code Compliance, Electrical/Power, Fire & Life Safety, HVAC, Lighting
Project timeline:
February 2008 to February 2013
Engineering services budget:
$31.13 million
MEP budget:
$31.13 million

Challenges

The HVAC system for the new Mark Jefferson Science Complex is projected to save over 40% of the energy required for a conventional ASHRAE baseline system. The existing Mark Jefferson building's HVAC system was a constant volume, reheat system. This type of system provides the same volume of air to each space, 24 hours a day, 365 days a year, regardless of whether the building is occupied or unoccupied. Laboratory HVAC systems are notorious energy consumers. These systems use large quantities of outdoor air. This outdoor air is used for heating and cooling of the spaces, to provide minimum air change rates for dilution of airborne contaminants, and as makeup air for fume hoods and other exhaust sources within the laboratories. Recirculation of this air in laboratory spaces is prohibited by code, so all air supplied to the laboratories must be exhausted.

An ASHRAE compliant laboratory HVAC system—the baseline system for energy comparison purposes—is a 100% outdoor air, variable air volume, reheat system. This type of system varies the supply air volume to meet the cooling or ventilation requirements of the space. When the ventilation requirements exceed the cooling requirements, heat must be added to prevent overcooling of the space.

Solutions

The HVAC system designed and installed for the new Mark Jefferson Science Complex handles HVAC quite differently. This innovative system type decouples the heating and cooling function from the ventilation function, and handles both in a very efficient manner. Ventilation—the required air change rates and the makeup air required for fume hoods—is handled with a dedicated outside air unit with dual energy recovery.

The dual energy recovery functions are (1) to exchange energy between the exhaust air stream and the incoming outdoor airstream, thereby significantly reducing the energy required to heat and cool the incoming outdoor air; and (2) in the cooling mode, to transfer some of the heat from before the cooling coil (precooling the entering air) to after in the cooling coil, reheating the air to a neutral temperature dry air for supply to the spaces. This dramatically reduces reheat energy. The air supplied by this unit handles the ventilation and the latent cooling requirements of the spaces. Heating and sensible cooling of the spaces is handled by hot water and chilled water hydronic terminal equipment. Instead of increasing the airflow to rooms, beyond what is required for ventilation, to provide additional cooling, as is done with a traditional variable air volume reheat system, chilled beams provide cooling with chilled water on a room-by-room basis. By handling the heating and cooling function with hydronic terminal equipment, airflow rates, duct systems, fan sizes, and the associated fan energy were significantly reduced. Accordingly, the space required above the ceiling for ductwork was reduced significantly.

Unique features of the custom, dedicated outdoor air unit included heat pipe technology energy recovery devices. These devices transfer heat efficiently without any moving parts and without required maintenance. The wrap-around heat pipe at the cooling coil was designed with a bypass so that during noncooling periods of time, when it is inactive, the air bypasses the coil bank and saves fan energy.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.