Motion based profiles, libraries ease integration

When determining the best standards, protocols, and solutions for motion applications, including robotics, it’s best to look at motion profiles.

12/01/2013


Motion technologies in Beckhoff TwinCAT software include electronic gearing, camming, G-code, robotic kinematics, and others for product tracking, product orientation, pick-and-place, and other functions. Tools, libraries, and drives fit a wide range of mWhen determining the best standards, protocols, and solutions for a motion application, it’s always best when done from the point of reference of the motion profiles. Electrical engineers and programmers must ask what must be accomplished with the motion system and work toward solutions that push the user to the correct methodology.

When implementing a CNC system, for example, engineers wouldn’t want to use CAM tables; they would opt for the longtime standard of G-code. For a packaging machine, on the other hand, system designers would likely use CAM tables and point-to-point motion as G-code, which is quite typical in the worlds of metalworking and woodworking, but would appear to be a strange duck when in the territory of a vertical form/fill/seal machine. Packaging is also home to numerous communication and programming standards, such as PLCopen (IEC 61131-3) and PackML from OMAC. Robotic applications are still another unique area. Control programming software offers electronic gearing, camming, G-code, and robotics kinematics that can serve product tracking, product orientation, pick-and-place, and other motion control applications.

Tools and libraries available match a wide range of motion application types. In this way, engineers can learn and work with one programming environment whether the machine is implementing point-to-point, NC, CNC, and/or robotics, across many industries and machine types for packaging, plastics, alternative energy, and entertainment engineering. With all the possible motion control devices that might be required and application types involved, automation software eases the integration of numerous motion-specific technologies (drives, actuators, motors, etc.) and auxiliary components. Numerous software driver tools facilitate connection to these kinds of industrial components and more, while managing multiple fieldbus networks for seamless integration.

Whether dealing with a simple motion application with a couple axes or a complex system with dozens of axes of motion or more, it is possible today to run the bulk (or all) of the logic on one hardware device if a multi-core-enabled PC-based controller is used. This technology could come in the form of a cabinet-mounted industrial PC (IPC) or a DIN rail-mounted embedded PC. The latter comes with a form factor that is much like a PLC or PAC and provides the convenience of a direct connection to I/O terminal systems.

For the motion network, it’s also best to standardize on a “do it all” solution. Among industrial Ethernet protocols, EtherCAT, for example, can serve as an I/O fieldbus and as a motion bus. Via the EtherCAT Technology Group (ETG), the network is supported by numerous globally active drives vendors, resulting in dozens of commercially available EtherCAT servo drives.

Apply standards-based selection criteria with system openness in mind for all aspects of a motion control system. For every element—from the controller hardware, to the software, to the network—it’s best to bank on solutions that, of course, provide an easy way in, but more importantly an easy way out, permitting the integration of other best-in-class, standards-based solutions.

- Matt Lecheler is motion specialist with Beckhoff Automation. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske(at)cfemedia.com.

ONLINE

See an article on platform integration below.

www.beckhoffautomation.com 



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.