Motion Feedback: Rotary Encoder Selection

Consider accuracy, position or velocity control, speed stability, power loss, and bandwidth, and other attributes when selecting a rotary encoder or encoder technology.

02/23/2011


Heidenhain EncoderControlled servo drives are used in many areas of automation technology, converting, printing, handling, and robotics including production machines and machine tools. The selection of a rotary encoder or encoder technology for use within the system depends on the accuracy requirements of the application, whether it is position and/or velocity control.

Before making an encoder decision, an engineer should examine all major encoder properties that have the largest influence on important motor performance, including:

  • Positioning accuracy
  • Speed stability
  • Audible noise, as little as possible
  • Power loss
  • Bandwidth, which determines drive command-signal response

Positioning accuracy

Positioning accuracy depends solely on the application requirements. Most resolvers, for example, have one signal period per revolution. Therefore, the position resolution is extremely limited and the accuracy typically is in the range of ~ ±500” (Arc seconds), assuming interpolation in the drive electronics usually results in a total of 16,384 positions per revolution.

On the other hand, an inductive scanning system as found in many rotary encoders will provide significantly higher resolution, typically in the range of 32 signal periods per revolution resulting in an accuracy of ~ ±280”. The interpolation in this case is internal to the encoder resulting in 131,072 positions per revolution.

Optical rotary encoders are based on very fine graduations commonly with 2,048 signal periods per revolution and therefore even much higher resolutions are possible with internal interpolation electronics. Position ErrorsThe output resolution here is 25-bits, 33,554,432 absolute positions per revolution with accuracies in the range of ~ ±20”.

Speed stability

To ensure smooth drive performance, an encoder must provide a large number of measuring steps per revolution as the first piece of the puzzle. However, an engineer must also pay attention to the quality of the encoder signals. To achieve the high resolution required, the scanning signals must be interpolated. Inadequate scanning, contamination of the measuring standard, and insufficient signal conditioning can lead to the signals deviating from the ideal shape. During interpolation, errors then occur whose periodic cycle is within one signal period. Therefore, these position errors within one signal period are also referred to as “interpolation error.” With high-quality encoders, these errors are typically 1% to 2% of the signal period. (See Figures 1 and 2.) Signal Position

The interpolation error adversely affects the positioning accuracy, and also significantly degrades the speed stability and audible noise behavior of the drive. The speed controller calculates the nominal currents used to brake or accelerate the drive depending on the error curve. At low feed rates, the feed drive lags the interpolation error. At increasing speeds, the frequency of the interpolation error also increases. Since the motor can only follow the error within the control bandwidth, its effect on the speed stability behavior decreases as the speed increases. However, the disturbances in the motor current continue to increase, which leads to disturbing noises in the drive at high control-loop gains.

Higher resolutions and accuracies also reduce disturbances in the motor current in the way of heat generation and power loss. The chart compares three scanning technologies and the resulting current draw.

Bandwidth

VariationsBandwidth (relative to command response and control reliability) can be limited by the rigidity of the coupling between the motor shaft and encoder shaft as well as by the natural frequency of the coupling. Encoders are qualified to operate within a specified acceleration range. Values typically range from 55 Hz to 2,000 Hz. However, if the application or poor mounting cause long-lasting resonant vibration, it will limit performance and possibly damage the encoder.

Natural frequencies vary depending on the stator coupling design. This frequency needs to be as high as possible for optimal performance.

The key is to ensure that the bearing of the encoder and the bearing of the motor are as close to perfect alignment as possible. The illustration shows how this is accomplished. The matching tapers of the motor shaft and encoder ensure near perfect alignment to the centerline. Motion Control Mounting

This mechanical configuration will result in a holding torque approximately 4x greater than a standard hollow shaft encoder with a 2-mounting tab stator coupling (below). This will increase the bearing life of the encoder and provide exceptional natural frequency / acceleration properties. Additionally, this configuration will virtually eliminate any limits on the bandwidth of the drive.

Blind Hollow ShaftMany factors influence the selection of an appropriate rotary encoder for use in controlled servo drives. And while positioning accuracy requirements are paramount in the consideration process, it is important to know how other properties can and will influence the application, such as speed stability, noise, possible power loss, and bandwidth. A good fit from the start will provide positive performance in the motor/drive system in the end.


Tom Wyatt is Heidenhain Automation Division Manager, North America, www.heidenhain.us.



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.