Motion: Sensors help ensure stir-welding repeatability

The friction stir welding process was invented in 1992 at The Welding Institute (TWI) in Cambridge, U.K. The solid-state welding process, combines extruding and forging, and is not true welding. The method was not created specifically for aluminum but is definitely well-suited for it.

09/27/2007


The friction stir welding process was invented in 1992 at The Welding Institute (TWI)

In the process, a hydraulic motor is coupled to a spindle. The spindle is rotated, and at the end, a drill-bit-like pin with a shoulder attached is plunged into the joint line between two metal sheets. By applying load and rotational speed, the aluminum plasticizes, but never reaches its melting point, and is extruded around the pin. This allows the operator to stir molecules from one plate of aluminum into molecules of another plate of aluminum to create a very strong, solid-state welding joint that is durable as well as environmentally friendly—there is no generation of smoke or gases as there is with standard fusion welding.

When MTS Systems built its Istir Advanced Friction Stir Welding development system, it kept its sensor selection in the family by choosing MTS Sensors ’ Temposonics linear position sensors to ensure the precision and repeatability of its machines.

Istir PDS is the first fully instrumented friction stir welding system capable of performing load-controlled welds along three independent axes. It has reliably produced welds with double curvature, joined materials less than 1 mm and up to 30 mm thick, and joined together materials that vary in thickness.

In friction stir welding, the welder stays stationary and the material moves. The MTS Temposonics sensors are used for positioning axes X, Y, and Z as the aluminum is moved into position. There is an RH sensor (40 inches in stroke) embedded in an actuator for the X-axis that is used to position the head; An RP sensor with a “floating” magnet (80 in. per stroke) attached to the top of the Y-axis table to position the moving part fixture base; and two ball screws for the Z-axis with an RP sensor with floating magnet (24 in. per stroke) on each side to position the weld head vertically.

The friction stir welding process creates a much stronger bond than traditional fusion welding, which is why it is ideal for aerospace applications. It’s also the reason that the components that make up the finished machine must be highly accurate and reliable, as so many of the welds generated by these machines will be part of mission-critical applications.

MTS’ proprietary synchronization technology guarantees the most accurate dynamic position output while minimizing inherent system-related delays to produce smooth, precise velocity loop control./EN 61000-4-2/3/4/6, level 3/4 criterion A).  This is critical in this type of machine tool and robotic application where high power servodrives typically are used.

The R-Series SSI sensor provides the same serial encoder interface (Synchronous Serial Interface) widely used in the servocontrol industry for absolute position feedback. The SSI interface option was a key factor for MTS Systems in choosing the sensor, according to John Meyer, Program Manager, MTS Systems. “We had electronics and hardware already in place to work with the SSI interface, so finding the position sensor that could work with that protocol was key.”

The R-Series SSI output sensor includes options for synchronized 7,500 Hz update rates and position accuracy as low as +/-40 microns (+/-0.0016 in.) standard.

The R-Series model RH hydraulic or “rod”-style” products are designed specifically to be embedded into high pressure hydraulic actuators.

Edited by C.G. Masi , senior editor from information provided by Tempsonics





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Salary and career survey: Benchmarks and advice; Designing controls; Remote data collection, historians; Control valve advances; Hannover Messe; Control Engineering International
System integration: Best practices and technologies to help; Virtualization virtues; Cyber security advice; Motor system efficiency, savings; Product exclusives; Road to Hannover
Collaborative robotics: How to improve safety, return on investment; Industrial Internet of Things, Industrie 4.0: World views; High-performance HMI, Information Integration: OPC and OMG
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
PLCs, robots, and the quest for a single controller; how OEE is key to automation solutions.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
click me