Motion system integration, 3 overlooked points

Tips and Tricks: Control Engineering asked what engineers overlook when doing motion system integration. Pay attention to mechatronics, scalability, and the advantages of using one automation architecture.

03/23/2012


What are the top three points engineers overlook in motion system integration? Three overlooked areas involve mechanical and electrical integration (mechatronics), scalability, and using one architecture for motion system integration.

1. Mechanical and electrical integration: Many engineers cannot justify the time required to invest in properly right-sizing system components during mechanical integration. But over- or under-sized components can add unnecessary expense and reduce system performance, both immediately and in the long term. For example, machine builders often don’t discover if a motor provides the precise power required for an application until commissioning. Going back at this point to choose a new motor is costly and time-consuming, so machine builders tend to select a product that has too much power rather than too little. However, too much power increases costs, as more powerful motors are more expensive to purchase and can impact an application’s dynamic performance requirements. Additionally, larger motors use more power, increasing energy costs throughout the life of the machine.

Motion Analyzer software links SolidWorks and RSLogix 5000 together, helping save time and money by moving profiles and calculating inertia, torque, force, and axis tuning gains to appropriately size and select motors and drives. Courtesy: Rockwell Automa

Finding the right-sized motor in a virtual environment allows machine builders to cost-effectively and quickly optimize system performance and energy efficiency. Software tools are available to help.

RSLogix 5000 and SolidWorks programs coordinate system properties using Delta 3-D. Courtesy: Rockwell Automation

2. Scalability: Traditional architectures require separate control infrastructures for most factory automation applications, including safety, motion, and process control. This creates unnecessary complexity because each platform has a unique design environment, user interface, and vendor support model. The new, modern approach to control helps machine builders standardize on one control architecture and leverage a common application programming and configuration environment. This standardization helps improve design flexibility, providing the ability to scale the control system up, down, or across applications to meet a range of needs.

A screenshot of Motion Analyzer software shows selected motors that meet exact application performance needs. Courtesy: Rockwell Automation

3. Single, open network architecture: In the past, motion applications required their own dedicated network. Any engineer looking to integrate motion is probably all too familiar with the hassles of multi-tiered network strategies, from communication issues to massive amounts of cabling. But don’t stop at integrated motion. By replacing a multi-tier networking strategy with one standard network architecture, machine builders and manufacturers can reduce their engineering, commissioning, and deployment time and integration risks.

A screenshot of Motion Analyzer software shows velocity data in a cycle profile. Courtesy: Rockwell Automation

Whitney is commercial program manager - Integrated Architecture, Rockwell Automation. Edited by Mark T. Hoske, CFE Media, Control Engineering content manager.

http://ab.rockwellautomation.com/Drives/Software

http://controleng.com/motors



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Big plans for small nuclear reactors: Simpler, safer control designs; Smarter manufacturing; Industrial cloud; Mobile HMI; Controls convergence
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.