Motor energy-efficiency developments: recycling, efficiency classes

Although an effective date isn’t expected before 2011, mandatory minimum energy performance standards (MEPS) for electric motors are coming to Europe in 2009. Learn more about recycling, replacement, and motor classes.


Although an effective date isn’t expected before 2011, mandatory minimum energy performance standards (MEPS) for electric motors are coming to Europe in 2009. This will promote energy-efficient (EE) motor systems that can save up to 30% of the 70% of industrial electricity used by motors, according to Prof. Aníbal T. de Almeida, Electric Engineering Dept., University of Coimbra, Portugal.
At the recent Motor Summit `08 in Zurich, Switzerland, Aníbal T. de Almeida, Electric Engineering Dept., University of Coimbra, Portugal, presented details of a study prompted by the European Union’s Ecodesign Energy-using Products (EuP) directive. This study has spurred mandatory minimum energy performance standards (MEPS) for electric motors, which are coming to Europe in 2009. Control Engineering covered the topic in its February 2008 issue. Here are additional details about the study and some related discussion.
While the range of electric motors affected was 0.75-200 kW (subsequently extended to 375 kW), three specific motor sizes were analyzed in the life-cycle cost (LCC) and environmental impact calculations. These were 1.1 kW, 11 kW, and 110 kW (1.5, 15, and 150 hp), representing small, medium, and large units. An average motor load factor of 60% and various operating time scenarios from 2,000 to 8,000 hours/year were used.
Recycling and replacement
The motors’ bill-of-materials (BoM) received extensive analysis for environmental effects. Included here were insulation materials, impregnation resins, paint, and packaging materials. Replacement of windings and bearings over the long life of motors was considered in the BoM analysis. As much as 95% of metal content in motors can be recycled, which was factored into the LCC analysis.
As for brushless permanent magnet (PM) motors , the statement that they’re readily available only in the lower power range of 0.75-7.5 kW is largely true. However, it should be noted that much larger size brushless PM motors are offered by some U.S. and Japanese manufacturers. (For example, see “

IPM motors for highest energy efficiency

,” October 2008 Control Engineering .)
It’s not a question of technology availability. Today’s higher initial cost for large brushless PM motors limits current sales volumes. Superior efficiency may drive up future demand, which would lower pricing.
Motor efficiency classes
In reference to the new, globally harmonized motor efficiency classes defined in standard, IEC 60034-30, there is a fourth motor class called IE4-super premium efficiency. This “future” motor class has been left open as far as a specific motor technology. One promising candidate might be the brushless PM magnet motor.
Scenario 2 for implementing mandatory MEPS for induction motors in the European Union (see main article) was proposed because it’s more difficult to manufacture high-efficiency motors in smaller frame sizes applicable to the 0.75-7.5 kW power range. This is especially the case for IEC frame sizes and 50 Hz design. The task is difficult but possible as new IEC motors in the market attest.
Also see related articles :

Motor Summit 2008 preview

Enhancing motor harmony

—Frank J. Bartos, P.E., Consulting Editor, Control Engineering
Machine Control eNewsletter
Register here

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security