Multivariable controllers balance competing objectives

Multivariable controllers differ from traditional single-variable controllers in that they can regulate more than one process variable by using more than one actuator at once. Doing so can be difficult if each actuator effects more than one process variable, but if those interactions can be quantified, the controller can determine the control efforts required to drive all of the process variab...

09/01/2008


Multivariable controllers differ from traditional single-variable controllers in that they can regulate more than one process variable by using more than one actuator at once. Doing so can be difficult if each actuator effects more than one process variable, but if those interactions can be quantified, the controller can determine the control efforts required to drive all of the process variables towards their respective setpoints simultaneously.

For example, an HVAC system responsible for maintaining the temperature and humidity in a conditioned space will find that the process variables are coupled. That is, they rise and fall together since condensing excess moisture out of the air requires cooling it, and adding moisture to the air requires an injection of hot steam. The trick is to chill the air and inject the steam in just the right combination.

Simultaneous control of a spacecraft

Simultaneous control of a spacecraft's yaw, pitch and roll was one of the earliest applications of multivariable control theory. Source: Control Engineering

Unfortunately, computing that ideal combination requires mathematical models and computational methods considerably more sophisticated than basic PID loops. The temperature and humidity can not be adequately controlled by two independent controllers operating in parallel. Each has to know what the other is doing or else any attempt to correct the temperature will disturb the humidity, which will in turn initiate humidity corrections that will disturb the temperature. Absent a coordinated effort, the two controllers would continue to fight each other in a never-ending cycle.

NASA engineers encountered a similar problem with the attitude control systems for their earliest spacecraft. They tried to control pitch, yaw and roll with three independent control loops. But since pitch causes yaw and yaw causes roll, the efforts of each controller affected the other two. The competing controllers ended up expending inordinate amounts of precious fuel during every maneuver.

The solution was found in the mathematical discipline of linear algebra, which can be used to quantify and compensate for the interactions between multiple actuators and process variables. Scores of multivariable control techniques based on the principles of linear algebra have ensued over the last 40 years, though very few have been applied outside of the aerospace, petrochemical and energy industries. They tend to be mathematically complex, but well worth the effort when coupled process variables are a problem.

Other benefits

Not only can multivariable controllers coordinate the efforts of multiple actuators simultaneously, they can optimize and constrain the overall control problem. That is, if the desired results can be achieved by more than one combination of control efforts, an optimizing controller can select the combination that minimizes a user-defined cost such as the discomfort of a room's occupants or the total volume of rocket fuel expended.

On the other hand, if it happens that the optimal control effort would require an impossible actuator position or an excessively high or low value for any of the process variables, a constraining controller can select the best combination of control efforts that comes closest to achieving the desired results without violating any of those constraints. Constraint management makes linear-algebra-based multivariable controllers especially valuable in the petrochemical industry where the greatest profit is realized when processes are run with all of their operating conditions at their maximum allowable values.

A linear-algebra-based multivariable controller can also determine if a particular selection of setpoints is even possible. In the HVAC example, high humidity and low temperatures can not generally be achieved simultaneously. A multivariable controller equipped with a thermodynamic model of the conditioned space would be able to deduce the controllability of the process and flag an unachievable combination of process variables.


Author Information

Vance VanDoren is consulting editor to Control Engineering. Reach him at controleng@msn.com .




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.