Nanosensors for machines

Back to Basics: Lower-cost nano sensing technologies are making their way into pressure, position, and motion sensors, transmitters, and power supplies.

01/25/2012


Nanosensing technologies are helping make the machine sensing portion of the control loop (sense, measure, actuate, and repeat) smaller and more reliable to make manufacturing more efficient and effective. Nanotechnologies continue to be discovered and applied to a wide range of applications, and ever smaller sensing elements have found a place in industrial machines—among these, silicon-based pressure sensors, position and motion sensors, even valves and transmitters. [Note: Some liberties are taken with the term “nano.” A nano PLC (programmable logic controller), while small compared to a traditional PLC, would be cumbersome to measure in nano scale: 1 nanometer = 1 billionth of a meter; there are 24.4 million nanometers/in.]

Traditional CMOS MEMS process versus Baolab NanoEMS (nano embedded mechanical systems): Baolab says its NanoEMS enables MEMS to be created inside the CMOS wafer using standard manufacturing techniques, allowing an order of magnitude smaller than existing

One manufacturer, Baolab, announced availability of evaluation kits by the end of February 2012 for its “NanoEMS” technology, promising to improve and shrink future sensors and communications technologies. Baolab Microsystems 3D NanoCompass is an electronic 3-axis micro electromechanical system (MEMS), incorporating nanoscale structures within the standard metal structure of a high-volume manufactured complementary metal-oxide semiconductor (CMOS) wafer.

Dave Doyle, Baolab CEO, said in a Jan. 12 announcement that the move from lab to fab shows the company’s technology is “reliable, scalable, and repeatable. This was the critical stage that our customers have been waiting for.” The NanoEMS process “makes it much easier and more cost effective to integrate MEMS sensors with microcontrollers and associated electronics all on the same chip in the same CMOS production line. This is the breakthrough that will enable high-volume, consumer electronics products to have intelligent sensors, meeting the increasing demand for smarter, more aware devices," Doyle said, advancing nanosensors. And industrial products, which are rapidly taking advantage of consumer electronics trends, will benefit with development of nanosensor technologies. Specifically, MEMS motion sensors will benefit, and Baolab NanoEMS structures also easily may be incorporated into ASICs for RF antennas, RF switches, and near field communication applications, including, the company said:

  • Vibrating antennas to overcome limitations of classic (static) antennas such as compact superdirective/superesolution antennas/lenses that require phase shifters and gains with an accuracy not currently realistic. Vibrating antennas make these feasible along with spatial multiplexing communications for mobile telecoms and Internet.
  • Thermo-magnetic RF switches and antennas: By exploiting the low value of the Curie temperature of nickel, it is possible to build RF switches, filters, and reconfigurable antennas. This creates a novel category of reconfigurable, reliable RF MEMS components, since there are no moving parts, achieving compelling RF specs, low power consumption, and low cost thanks to CMOS processing.
  • Modal switches: This topology enables compelling specifications for RF switches with low-capacitance ratio and high isolation, using low-cost, low-resistivity CMOS substrates. The principle is based on transferring power from the different transmission modes in a transmission line, using reconfigurable MEMS loads to balance and unbalance the line.
  • Integrated passives, including inductors, transformers, capacitors: Integrated inductors with a helicoidal shape typical of off-chip inductors offer reduced losses (higher Q) and smaller parasitic capacitance (higher resonant frequency). It is also possible to create transformers with any winding ratio.
  • Integrated capacitors for low-frequency applications, especially power, where the tangent capacitance is used instead of the traditional approach using secant capacitance. When capacitors are used in voltage regulators, only a small fraction of the charge stored in the capacitor is typically used to regulate the voltage. This kind of capacitor allows a higher percentage of the stored charge to be used to regulate the voltage, which makes it possible to implement smaller, integrated filters and regulators, with superior performance.
  • RF filters: The small feature size of CMOS processing makes it possible to implement RF MEMS filters up to the GHz band required for cell phone communications and significantly increase the electromechanical coupling. Current MEMS RF mechanical filters have a problem with very low electromechanical coupling, which means low sensitivity; they try to offset this by using a very high voltage but with limited success.
  • Power converters: Integrated charge pumps and power supplies will drop in cost and be more compact and efficient.

- Mark T. Hoske, content manager for Control Engineering, CFE Media, can be reached at mhoske(at)cfemedia.com.

www.baolab.com 

www.nano.gov says fingernails grow about 1 nm/sec.

More tutorials: http://controleng.com/tutorials



No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.